Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Painleve analysis of travelling wave solutions and analysis of energy estimates for a nonlinear Sobolev-type equation

https://doi.org/10.26907/2541-7746.2023.3.182-189

Abstract

There is considerable interest in studying unbounded solutions of nonlinear partial equations. In many cases, energy estimates can be used to prove that the solution tends to infinity in finite time, while also providing an estimate for the latter. Here, an equation in which energy estimates fail to gauge the cases when solutions exhibit such behavior was analyzed. A class of unbounded solutions was explored using the Painleve analysis.

About the Author

A. I. Aristov
Lomonosov Moscow State University; Federal Research Center “Computer Sciences and Control”, Russian Academy of Sciences; MIREA – Russian Technological University
Russian Federation

Moscow, 119991

Moscow, 119333

Moscow, 119454



References

1. Korpusov M.O. Razrushenie v neklassicheskikh nelokal’nykh uravneniyakh [Blow-Up in Nonclassical Nonlocal Equations]. Moscow, URSS, 2010. 374 p. (In Russian)

2. Sveshnikov A.G., Al’shin A.B., Korpusov M.O., Pletner Yu.D. Lineynye i nelineinye uravneniya sobolevskogo tipa [Linear and Nonlinear Sobolev-Type Equations]. Moscow, Fizmatlit, 2007. 736 p. (In Russian)

3. Aristov A., Kholomeeva A., Moiseev E. Application of the Painleve test to a nonlinear partial differential equation. Lobachevskii J. Math., 2022, vol. 43, no. 7, pp. 1553–1556. https://doi.org/10.1134/S1995080222100031.

4. Polyanin A.D., Zaitsev V.F., Zhurov A.I. Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki [Methods for Solving Nonlinear Equations in Mathematical Physics and Mechanics]. Moscow, Fizmatlit, 2005. 256 p. (In Russian)


Review

For citations:


Aristov A.I. Painleve analysis of travelling wave solutions and analysis of energy estimates for a nonlinear Sobolev-type equation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2023;165(3):182-189. (In Russ.) https://doi.org/10.26907/2541-7746.2023.3.182-189

Views: 156


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)