Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

R-Linear Conjugation Problem on the Unit Circle in the Parabolic Case

https://doi.org/10.26907/2541-7746.2024.2.250-261

Abstract

A solution to the R-linear conjugation problem (Markushevich boundary value problem) on the unit circle was proposed. This problem is analogous to the vector-matrix Riemann boundary value problem with the coefficient degenerating in the parabolic case (the coefficient is a triangular matrix function). A complete description of the factorization of the matrix coefficient was provided. Its partial indices were calculated. The method used is based on G.N. Chebotarev’s algorithm and has been developed in a series of author’s articles. The resulting factorization confirms the solvability of the R-linear conjugation problem on the unit circle in the parabolic case.

About the Authors

S. V. Rogosin
Belarusian State University
Belarus

Minsk, 220050



L. P. Primachuk
Belarusian State University
Belarus

Minsk, 220050



M. V. Dubatovskaya
Belarusian State University
Belarus

Minsk, 220050



References

1. Markushevich A.I. On a boundary value problem of analytic function theory. Uch. Zap. Mosk. Univ., 1946, vol. 1, no. 100, pp. 20–30. (In Russian)

2. Mityushev V.V. R-linear and Riemann–Hilbert problems for multiply connected domains. In: Rogosin S.V., Koroleva A.A. (Eds.) Advances in Applied Analysis. Ser.: Trends in Mathematics. Basel, Birkh¨auser, 2012, pp. 147–176. https://doi.org/10.1007/978-3-0348-0417-2_4.

3. Drygaˇs P., Gluzman S., Mityushev V., Nawalaniec W. Applied Analysis of Composite Media: Analytical and Computational Results for Materials Scientists and Engineers. Ser.: Woodhead Publishing Series in Composites Science and Engineering. Cambridge, Woodhead Publ., 2019. 372 p. https://doi.org/10.1016/C2017-0-03743-6.

4. Mityushev V.V., Rogosin S.V. Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions: Theory and Applications. Ser.: Monographs and Surveys in Pure and Applied Mathematics. Vol. 108. Boca Raton, FL, London, New York, NY, Washington, DC, Chapman & Hall/CRC, 1999. 296 p.

5. Vekua I.N. Nekotorye obshchie metody postroeniya razlichnykh variantov teorii obolochek [Some General Methods of Constructing Various Versions of the Shell Theory]. Moscow, Nauka, 1982. 286 p. (In Russian)

6. Gakhov F.D. Kraevye zadachi [Boundary Value Problems]. 3rd ed. Moscow, Nauka, 1977. 640 p. (In Russian)

7. Mikhailov L.G. The general conjugation problem for analytic functions and its applications. Izv. Akad. Nauk SSSR, Ser. Mat., 1963, vol. 27, no. 5, pp. 969–992. (In Russian)

8. Bojarski B. On generalized Hilbert boundary value problem. Soobshch. Akad. Nauk Gruz. SSR, 1960, vol. 25, no. 4, pp. 385–390. (In Russian)

9. Sabitov I.Kh. A general boundary value problem for the linear conjugate on the circle. Sib. Mat. Zh., 1964, vol. 5, no. 1, pp. 124–129. (In Russian)

10. Litvinchuk G.S. Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift. Ser.: Mathematics and Its Applications. Vol. 523. Dordrecht, Kluwer Acad. Publ., 2000. xvi, 378 p. https://doi.org/10.1007/978-94-011-4363-9.

11. Litvinchuk G.S. Two theorems on the stability of the partial indices of Riemann boundary value problem and their application. Izv. Vyssh. Uchebn. Zaved., Mat., 1967, no. 12, pp. 47–57. (In Russian)

12. Litvinchuk G.S., Spitkovskii I.M. Factorization of Measurable Matrix Functions. Heinig G. (Ed.). Ser.: Operator Theory: Advances and Applications. Vol. 25. Basel, Birkh¨auser, 1987. 372 p. https://doi.org/10.1007/978-3-0348-6266-0.

13. Rogosin S.V., Mishuris G. Constructive methods for factorization of matrix-functions. IMA J. Appl. Math., 2016, vol. 81, no. 2, pp. 365–391. https://doi.org/10.1093/imamat/hxv038.

14. Kisil A.V., Abrachams I.D., Mishuris G., Rogosin S.V. The Wiener–Hopf technique, its generalizations and applications: Constructive and approximate methods. Proc. R. Soc. A, 2021, vol. 477, no. 2254, art. 20210533. https://doi.org/10.1098/rspa.2021.0533.

15. Adukov V.M. Wiener–Hopf factorization of meromorphic matrix functions. St. Petersburg Math. J., 1993, vol. 4, no. 1, pp. 51–69.

16. Adukov V.M. Wiener-Hopf factorization of piecewise meromorphic matrix-valued functions. Sb.: Math., 2009, vol. 200, no. 8, pp. 1105–1126. https://doi.org/10.1070/SM2009v200n08ABEH004030.

17. Cˆamara M.C., Malheiro M.T. Meromorphic factorization revisited and application to some groups of matrix functions. Complex Anal. Oper. Theory, 2008, vol. 2, no. 2, pp. 299–326. https://doi.org/10.1007/s11785-008-0054-1.

18. Chebotarev G.N. Partial indices for the Riemann boundary value problem with a triangular matrix of the second order. Usp. Mat. Nauk, 1956, vol. 11, no. 3 (69), pp. 192– 202. (In Russian)

19. Primachuk L., Rogosin S.V. Factorization of triangular matrix-functions of an arbitrary order. Lobachevskii J. Math., 2018, vol. 39, no. 6, pp. 809–817. https://doi.org/10.1134/S1995080218060148.

20. Bojarski B. Stability of the Hilbert problem for a holomorphic vector. Soobshch. Akad. Nauk Gruz. SSR, 1958, vol. 21, no. 4, pp. 391–398. (In Russian)

21. Gokhberg I.Ts., Krein M.G. On the stable system of partial indices in the Hilbert problem for many unknown functions. Dokl. Akad. Nauk SSSR, 1958, vol. 119, no. 5, pp. 854–857. (In Russian)

22. Gokhberg I.Ts., Krein M.G. Systems of integral equations on the half-line with kernels depending on the difference of the arguments. Usp. Mat. Nauk, 1958, vol. 13, no. 2 (80), pp. 3–72. (In Russian)

23. Mishuris G., Rogosin S. Approximate factorization of a class of matrix-function with unstable set of partial indices. Proc. R. Soc. A, 2018, vol. 474, no. 2209, art. 20170279. https://doi.org/10.1098/rspa.2017.0279.

24. Litvinchuk G.S., Spitkovskii I.M. Sharp estimates of defect numbers of a generalized Riemann boundary value problem, factorization of Hermitian matrix-valued functions and some problems of approximation by meromorphic functions. Math. USSR – Sb., 1983, vol. 45, no. 2, pp. 205–224. https://doi.org/10.1070/sm1983v045n02abeh002595.

25. Muskhelishvili N.I. Singulyarnye integral’nye uravneniya [Singular Integral Equations]. 3rd ed. Moscow, Nauka, 1968. 512 p. (In Russian)


Review

For citations:


Rogosin S.V., Primachuk L.P., Dubatovskaya M.V. R-Linear Conjugation Problem on the Unit Circle in the Parabolic Case. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(2):250–261. (In Russ.) https://doi.org/10.26907/2541-7746.2024.2.250-261

Views: 125


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)