On the Linear Complexity of Generalized Cyclotomic Sequences with Odd Period
https://doi.org/10.26907/2541-7746.2024.2.162-172
Abstract
The linear complexity of new generalized cyclotomic sequences with odd period was estimated. The sequences were defined using generalized cyclotomic classes composite modulo. Conditions sufficient for the existence of binary and non-binary sequences with high linear complexity were obtained. The earlier results on the linear complexity of sequences with the period equal to the power of a prime were generalized.
About the Author
V. A. EdemskiyRussian Federation
Veliky Novgorod, 173003 Russia
References
1. Cusick T.W., Ding C., Renvall A. Stream Ciphers and Number Theory. Ser.: NorthHolland Mathematical Library. Vol. 55, Suppl. C. Amsterdam, Elsevier Sci., 1998. 431 p. URL: https://www.sciencedirect.com/bookseries/north-holland-mathematical-library/ vol/55/suppl/C.
2. Chen X., Chen Z., Liu H. A family of pseudorandom binary sequences derived from generalized cyclotomic classes modulo pm+1qn+1 . Int. J. Network Secur., 2020, vol. 22, no. 4, pp. 610–620. https://doi.org/10.6633/IJNS.202007_22(4).09.
3. Fan C., Ge G. A unified approach to Whiteman’s and Ding–Helleseth’s generalized cyclotomy over residue class rings. IEEE Trans. Inf. Theory, 2014, vol. 60, no. 2, pp. 1326– 1336. https://doi.org/10.1109/TIT.2013.2290694.
4. Hu L., Yue Q., Wang M. The linear complexity of Whiteman’s generalized cyclotomic sequences of period pm+1qn+1 . IEEE Trans. Inf. Theory, 2012, vol. 58, no. 8, pp. 5534– 5543. https://doi.org/10.1109/TIT.2012.2196254.
5. Zeng X., Cai H., Tang X., Yang Y. Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory, 2013, vol. 59, no. 5, pp. 3237–3248. https://doi.org/10.1109/TIT.2013.2237754.
6. Xiao Z., Zeng X., Li C., Helleseth T. New generalized cyclotomic binary sequences of period p2 . Des. Codes Cryptogr., 2018, vol. 86, no. 7, pp. 1483–1497. https://doi.org/10.1007/s10623-017-0408-7.
7. Edemskiy V., Li C., Zeng X., Helleseth T. The linear complexity of generalized cyclotomic binary sequences of period pn . Des. Codes Cryptogr., 2019, vol. 87, no. 5, pp. 1183–1197. https://doi.org/10.1007/s10623-018-0513-2.
8. Ye Z., Ke P., Wu C. A further study of the linear complexity of new binary cyclotomic sequence of length pr . Appl. Algebra Eng. Commun. Comput., 2019, vol. 30, no. 3, pp. 217– 231. https://doi.org/10.1007/s00200-018-0368-9.
9. Ouyang Y., Xie X. Linear complexity of generalized cyclotomic sequences of period 2p . Des. Codes Cryptogr., 2019, vol. 87, no. 11, pp. 2585–2596. https://doi.org/10.1007/s10623-019-00638-5.
10. Edemskiy V., Wu C. Linear complexity of generalized cyclotomic sequences with period p q . In: Mesnager S., Zhou Z. (Eds.) Arithmetic of Finite Fields: 9th International Workshop, WAIFI 2022, Chengdu, China, August 29 – September 2, 2022, Revised Selected Papers. Ser.: Lecture Notes in Computer Science. Vol. 13638. Cham, Springer, 2023, pp. 320–333. https://doi.org/10.1007/978-3-031-22944-2_21.
11. Ireland K., Rosen M. Klassicheskoe vvedenie v sovremennuyu teoriyu chisel [A Classical Introduction to Modern Number Theory]. Moscow, Mir, 1987. 416 p. (In Russian)
Review
For citations:
Edemskiy V.A. On the Linear Complexity of Generalized Cyclotomic Sequences with Odd Period. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(2):162–172. (In Russ.) https://doi.org/10.26907/2541-7746.2024.2.162-172