Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Multivariate Rayleigh, Rice, and Nakagami distributions and their applications in communication theory

https://doi.org/10.26907/2541-7746.2024.2.127-146

Abstract

A method was developed to calculate the symbol and bit error probabilities for coherent diversity reception of multi-position signal structures in a communication channel with additive white Gaussian noise (AWGN) and general fading described by the multivariate Rayleigh and Nakagami distributions, as well as the bivariate Rice distribution.

About the Authors

Yu. A. Brychkov
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Moscow, 119333



N. V. Savischenko
Military Telecommunications Academy
Russian Federation

St. Petersburg, 194064



References

1. Savischenko N.V. Special Integral Functions Used in Wireless Communications Theory. Singapore, World Sci., 2014. 640 p. https://doi.org/10.1142/9168.

2. Brychkov Yu.A., Savischenko N.V. Hypergeometric functions of several variables and evaluation of error probability in fading multichannel system. Lobachevskii J. Math., 2021, vol. 42, no. 1, pp. 70–83. https://doi.org/10.1134/S1995080221010108.

3. Simon M.K. Probability Distributions Involving Gaussian Random Variables: A Handbook for Engineers and Scientists. Ser.: The Springer International Series in Engineering and Computer Science. New York, NY, Springer, 2006. xxiv, 200 p. https://doi.org/10.1007/978-0-387-47694-0.

4. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integraly i ryady [Integrals and Series]. Vol. 2: Special functions. 2nd ed., rev. Moscow, Fizmatlit, 2003. 664 p. (In Russian)

5. Mallik R.K. On multivariate Rayleigh and exponential distributions. IEEE Trans. Inf. Theory, 2003, vol. 49, no. 6, pp. 1499–1515. https://doi.org/10.1109/TIT.2003.811910.

6. Il’in V.P., Kuznetsov Yu.I. Trekhdiagonal’nye matritsy i ikh prilozheniya [Tridiagonal Matrices and Their Applications]. Moscow, Nauka, 1985. 208 p. (In Russian)

7. Usmani R.A. Inversion of a tridiagonal Jacobi matrix. Linear Algebra Its Appl., 1994, vols. 212–213, pp. 413–414. https://doi.org/10.1016/0024-3795(94)90414-6.

8. Blumenson L.E., Miller K.S. Properties of generalized Rayleigh distributions. Ann. Math. Stat., 1963, vol. 34, no. 3, pp. 903–910. https://doi.org/10.1214/aoms/1177704013.

9. Karagiannidis G.K., Zogas D.A., Kotsopoulos S.A. An efficient approach to multivariate Nakagami- m distribution using Green’s matrix approximation. IEEE Trans. Wireless Commun., 2003, vol. 2, no. 5, pp. 883–889. https://doi.org/10.1109/TWC.2003.816792.

10. Brychkov Yu.A., Marichev O.I., Savischenko N.V. Handbook of Mellin Transforms. Ser.: Advances in Applied Mathematics. Boca Raton, FL, Chapman & Hall/CRC, 2018. 607 p. https://doi.org/10.1201/9780429434259.

11. Srivastava H.M., Karlsson P.W. Multiple Gaussian Hypergeometric Series. Ellis Horwood Ser. in Mathematics and Its Applications: Statistics and Operational Research. Chichester, Ellis Horwood Ltd.; New York, NY, Halsted Press, 1985. 425 p.

12. Simon M.K., Alouini M.-S. Digital Communications over Fading Channels: A Unified Approach to Performance Analysis. 2nd ed. New York, NY, Wiley, 2005. 936 p. https://doi.org/10.1002/0471715220.

13. Levin B.R. Teoreticheskie osnovy statisticheskoi radiotekhniki [Theoretical Basics of Statistical Radio Engineering]. 3rd ed., rev. and enl. Moscow, Radio Svyaz’, 1989. 656 p. (In Russian)

14. Watson G.N. Teoriya besselevykh funktsii [A Treatise on the Theory of Bessel Functions]. Pt. 1. Moscow, Izd. Inostr. Lit., 1949. 799 p. (In Russian)

15. Gonorovskii I.S. Radiotekhnicheskie tsepi i signaly [Radio Circuits and Signals]. 5th ed., rev. and enl. Moscow, Drofa, 2006. 719 p. (In Russian)


Review

For citations:


Brychkov Yu.A., Savischenko N.V. Multivariate Rayleigh, Rice, and Nakagami distributions and their applications in communication theory. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(2):127–146. (In Russ.) https://doi.org/10.26907/2541-7746.2024.2.127-146

Views: 332


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)