The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis
https://doi.org/10.26907/2541-7746.2024.1.111-122
Abstract
This article analyzes the inhomogeneous Hilbert boundary value problem for an upper half-plane with the finite index and boundary condition on the real axis for one generalized Cauchy–Riemann equation with a singular point on the real axis. A structural formula was obtained for the general solution of this equation under restrictions leading to an infinite index of the logarithmic order of the accompanying Hilbert boundary value problem for analytic functions. This formula and the solvability results of the Hilbert problem in the theory of analytic functions were applied to solve the set boundary value problem.
Keywords
About the Authors
P. L. ShabalinRussian Federation
420043; Kazan
R. R. Faizov
Russian Federation
420043; Kazan
References
1. Vekua I.N. Obobshchennye analiticheskie funktsii [Generalized Analytic Functions]. Moscow, Nauka, 1988. 512 p. (In Russian)
2. Timergaliev S.N. On existence of solutions of nonlinear equilibrium problems on shallow inhomogeneous anisotropic shells of the Timoshenko type. Russ. Math., 2019, vol. 63, no. 8, pp. 38–53. doi: 10.3103/S1066369X1908005X.
3. Timergaliev S.N. On the solvability of nonlinear boundary value problems for the system of differential equations of equilibrium of shallow anisotropic Timoshenko-type shells with free edges. Differ. Equations, 2021, vol. 57, no. 4, pp. 488–506. doi: 10.1134/s0012266121040066.
4. Mikhailov L.G. Novye klassy osobykh integral’nykh uravnenii i ego primeneniya k differentsial’nym uravneniyam s singulyarnymi koeffitsientami [New Classes of Special Integral Equations and Their Application to Differential Equations with Singular Coefficients]. Dushanbe, Akad. Nauk Tadzh. SSR, 1963. 183 p. (In Russian)
5. Rajabov N.R. Integral’nye predstavlenie i granichnye zadachi dlya nekotorykh differentsial’nykh uravnenii s singulyarnoi liniei ili s singulyarnymi poverkhnostyami Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces]. Pt. I. Dushanbe, TGU, 1980. 126 p. (In Russian)
6. Rajabov N.R. Integral’nye predstavlenie i granichnye zadachi dlya nekotorykh differentsial’nykh uravnenii s singulyarnoi liniei ili s singulyarnymi poverkhnostyami [Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces]. Pt. II. Dushanbe, TGU, 1981. 170 p. (In Russian)
7. Rajabov N.R. Integral’nye predstavlenie i granichnye zadachi dlya nekotorykh differentsial’nykh uravnenii s singulyarnoi liniei ili s singulyarnymi poverkhnostyami [Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces]. Pt. III. Dushanbe, TGU, 1982. 170 p. (In Russian)
8. Rajabov N.R. Integral representations and boundary value problems for the generalized Cauchy–Riemann system with a singular line. Dokl. Akad. Nauk SSSR, 1982, vol. 267, no. 2, pp. 300–305. (In Russian)
9. Usmanov Z.D. Obobshchennye sistemy Koshi–Rimana s singulyarnoi tochkoi [Generalized Cauchy–Riemann Systems with a Singular Point]. Dushanbe, Akad. Nauk Tadzh. SSR, 1993. 244 p. (In Russian)
10. Begehr H., Dai D.-Q. On continuous solutions of a generalized Cauchy–Riemann system with more than one singularity. J. Differ. Equations, 2004, vol. 196, no. 1, pp. 67–90. doi: 10.1016/j.jde.2003.07.013.
11. Meziani A. Representation of solutions of a singular Cauchy–Riemann equation in the plane. Complex Var. Elliptic Equations, 2008, vol. 53, no. 12, pp. 1111–1130. doi: 10.1080/17476930802509239.
12. Rasulov A.B., Soldatov A.P. Boundary value problem for a generalized Cauchy–Riemann equation with singular coefficients. Differ. Equations, 2016, vol. 52, no. 5, pp. 616–629. doi: 10.1134/S0012266116050086.
13. Fedorov Yu.S., Rasulov A.B. Hilbert type problem for a Cauchy–Riemann equation with singularities on a circle and at a point in the lower-order coefficients. Differ. Equations, 2021, vol. 57, no. 1, pp. 127–131. doi: 10.1134/S0012266121010122.
14. Rasulov A.B., Dorofeeva I.N. Integral representations for the generalized Cauchy–Riemann equation with a supersingular point on a half-plane. Vestn. MEI, 2020, no. 1, pp. 105–108. doi: 10.24160/1993-6982-2020-1-105-108. (In Russian)
15. Dorofeeva I.N., Rasulov A.B. Dirichlet problem for a generalized Cauchy–Riemann equation with a supersingular point on a half-plane. Comput. Math. Math. Phys., 2020, vol. 60, no. 10, pp. 1679–1685. doi: 10.1134/S0965542520100073.
16. Rasulov A.B. The Riemann problem on a semicircle for a generalized Cauchy–Riemann system with a singular line. Differ. Equations, 2004, vol. 40, no. 9, pp. 1364–1366. doi: 10.1007/s10625-005-0015-7.
17. Rasulov A.B. Integral representations and the linear conjugation problem for a generalized Cauchy–Riemann system with a singular manifold. Differ. Equations, 2000, vol. 36, no. 2, pp. 306–312. doi: 10.1007/BF02754217.
18. Shabalin P.L. Hilbert boundary value problem for a class of generalized analytic functions with a singular line. Mat. Fiz. Komp’yut. Model., 2022, vol. 25, no. 4, pp. 15–28. doi: 10.15688/mpcm.jvolsu.2022.4.2. (In Russian)
19. Shabalin P.L., Faizov R.R. The Riemann problem with a condition on the real axis for generalized analytic functions with a singular curve. Sib. Math. J., 2023, vol. 64, no. 2, pp. 431–442. doi: 10.1134/S0037446623020155.
20. Shabalin P.L., Faizov R.R. The Riemann problem in a half-plane for generalized analytic functions with a singular line. Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3, pp. 78–89. doi: 10.26907/0021-3446-2023-3-78-89. (In Russian)
21. Shabalin P.L., Faizov R.R. The Riemann problem on a ray for generalized analytic functions with a singular line. Izv. Sarat. Univ. Nov. Ser. Ser.: Mat. Mekh. Inf., 2023, vol. 23, no. 1, pp. 58–69. doi: 10.18500/1816-9791-2023-23-1-58-69. (In Russian)
22. Gakhov F.D. Kraevye zadachi [Boundary Value Problems]. Moscow, Nauka, 1977. 640 p. (In Russian)
23. Alekna P.Ju. Hilbert boundary value problem with infinite logarithmic order index for a half-plane. Liet. Mat. Rinkinys, 1977, vol. 17, no. 1, pp. 5–11. (In Russian)
24. Alekhno A.G. Hilbert boundary value problem with infinite index of logarithmic order. Dokl. Akad. Nauk BSSR, 2009, vol. 53, no. 2, pp. 5–10. (In Russian)
25. Salimov R.B., Shabalin P.L. On solvability of homogeneous Riemann–Hilbert problem with discontinuities of coefficients and two-sided curling at infinity of a logarithmic order. Russ. Math., 2016, vol. 60, no. 1, pp. 30–41. doi: 10.3103/S1066369X16010047.
26. Shabalin P.L., Fatykhov A.K. Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence. Russ. Math., 2021, vol. 65, no. 1, pp. 57–71. doi: 10.3103/S1066369X21010059.
Review
For citations:
Shabalin P.L., Faizov R.R. The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(1):111-122. (In Russ.) https://doi.org/10.26907/2541-7746.2024.1.111-122