Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

On the motion of a viscous liquid with a free boundary

https://doi.org/10.26907/2541-7746.2024.1.99-110

Abstract

   The problem of the non-stationary flow of a viscous liquid with an external free boundary around a moving solid cylindrical body was formulated and solved. The liquid is subject to periodic impacts with or without the predominant direction in space. To formulate the problem, the Navier—Stokes equation, the continuity equation, and the equation of conditions at both the solid and free boundaries of the liquid were used. New hydro-mechanical effects were discovered.

About the Author

V. L. Sennitskii
Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences
Russian Federation

630090; Novosibirsk



References

1. Chelomey V.N. Paradoxes in mechanics caused by vibrations. Dokl. Akad. Nauk SSSR, 1983, vol. 270, no. 1, pp. 62–67. (In Russian)

2. Chelomey V.N. Izbrannye trudy [Selected Works]. Moscow, Mashinostroenie, 1989. 336 p. (In Russian)

3. Sennitskii V.L. Paradoxal motion of a liquid. Mezhdunar. Zh. Prikl. Fundam. Issled., 2017, no. 8, pt. 1, pp. 28–33. doi: 10.17513/mjpfi.11753. (In Russian)

4. Sennitskii V.L. Predominantly unidirectional flow of a viscous fluid. J. Appl. Ind. Math., 2021, vol. 15, no. 2, pp. 326–330. doi: 10.1134/S1990478921020149.

5. Sennitskii V.L. On peculiarities of a liquid flow in a gravity field. Sib. Elektron. Mat. Izv., 2022, vol. 19, no. 1, pp. 241–247. URL: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=semr&paperid=1495&option_lang=rus. (In Russian)

6. Sennitskii V.L. Motion of a circular cylinder in a vibrating liquid. J. Appl. Mech. Tech. Phys., 1985, vol. 26, no. 5, pp. 620–623. doi: 10.1007/BF00915307.

7. Lugovtsov B.A., Sennitskii V.L. Motion of a body in a vibrating liquid. Dokl. Akad. Nauk SSSR, 1986, vol. 289, no. 2, pp. 314–317. (In Russian)

8. Lyubimov D.V., Lyubimova T.P., Cherpanov A.A. On the motion of a rigid body in a vibrating liquid. In: Konvektivnye techeniya [Convective Flows]. Perm, Izd. Permsk. Pedagog. Inst., 1987, pp. 61–71. (In Russian)

9. Sennitskii V.L. Predominantly unidirectional motion of a gas bubble in a vibrating liquid. Dokl. Akad. Nauk SSSR, 1991, vol. 319, no. 1, pp. 117–119. (In Russian)

10. Lyubimov D.V. New approach in the vibrational convection theory // Proc. 14 IMACs Congr. on Computational and Applied Mathematics. Atlanta, GA: Ga. Inst. Technol., 1994. P. 59–68.

11. Lyubimov D.V. Thermovibrational flows in nonuniform systems // Microgravity Q. 1994. V. 4, No 1. P. 221–225.

12. Kozlov V.G. Solid-body dynamics in cavity with liquid under high-frequency rotational vibration // Europhys. Lett. 1996. V. 36, No 9. P. 651–656. doi: 10.1209/epl/i1996-00282-0.

13. Lyubimov D.V., Lyubimova T.P., Meradji S., Roux B. Vibrational control of crystal growth from liquid phase // J. Cryst. Growth. 1997. V. 180, No 3–4. P. 648–659. doi: 10.1016/S0022-0248(97)00294-7.

14. Ivanova A.A., Kozlov V.G., Evesque P. Dynamics of a cylindrical body in a liquid-filled sector of a cylindrical layer under rotational vibration. Fluid Dyn., 1998, vol. 33, no. 4, pp. 488–496. doi: 10.1007/BF02698213.

15. Lyubimov D.V., Perminov A.V., Cherepanov A.A. Generation of mean flows near fluid interface in a vibration field. In: Vibratsionnye effekty v gidrodinamike : Sb. statei [Vibration Effects in Hydrodynamics: A Collection of Articles]. Perm, Permsk. Univ., 1998, pp. 204–221. (In Russian)

16. Lyubimov D.V., Lyubimova T.P., Cherepanov A.A. Dinamika poverkhnostei razdela v vibratsionnykh polyakh [Dynamics of Interfaces in Vibration Fields]. Moscow, Fizmatlit, 2003. 216 p. (In Russian)

17. Ivanova A.A., Kozlov V.G., Kuzaev A.F. Vibrational lift force acting on a body in a fluid near a solid surface. Dokl. Phys., 2005, vol. 50, no. 6, pp. 311–314. doi: 10.1134/1.1958123.

18. Lyubimov D., Lyubimova T., Vorobev A., Mojtabi A., Zappoli B. Thermal vibrational convection in near-critical fluids. Part I. Non-uniform heating // J. Fluid Mech. 2006. V. 564. P. 159–183. doi: 10.1017/S0022112006001418.

19. Hassan S., Lyubimova T.P., Lyubimov D.V., Kawaji M. Motion of a sphere suspended in a vibrating liquid-filled container // J. Appl. Mech. 2006. V. 73, No 1. P. 72–78. doi: 10.1115/1.1992516.

20. Lyubimov D.V., Lyubimova T.P., Shklyaev S.V. Behavior of a drop on an oscillating solid plate // Phys. Fluids. 2006. V. 18. Art. 012101. URL: https://www.researchgate.net/publication/252458159_Behavior_of_a_drop_on_an_oscillating_solid_plate.

21. Shevtsova V., Melnikov D., Legros J.C., Yan Y., Saghir Z., Lyubimova T., Sedelnikov G., Roux B. Influence of vibrations on thermodiffusion in binary mixture: A benchmark of numerical solutions // Phys. Fluids. 2007. V. 19. Art. 017111. doi: 10.1063/1.2409622.

22. Ivanova A.A., Kozlov V.G., Kuzaev A.F. Vibrational hydrodynamic interaction between a sphere and the boundaries of a cavity. Fluid Dyn., 2008, vol. 43, no. 2, pp. 194–202. doi: 10.1134/S001546280802004X.

23. Kozlov V., Ivanova A., Schipitsyn V., Stambouli M. Lift force acting on the cylinder in viscous liquid under vibration // Acta Astronaut. 2012. V. 79. P. 44–51. doi: 10.1016/j.actaastro.2012.04.013.

24. Ivanova A.A., Kozlov V.G., Shchipitsyn V.D. A light cylinder under horizontal vibration in a cavity filled with a fluid. Fluid Dyn., 2010, vol. 45, no. 6, pp. 889–897. doi: 10.1134/S0015462810060062.

25. Lyubimov D.V., Baydin A.Y., Lyubimova T.P. Particle dynamics in a fluid under high frequency vibrations of linear polarization // Microgravity Sci. Techol. 2013. V. 25, No 2. P. 121–126. doi: 10.1007/s12217-012-9336-3.

26. Ivanova A.A., Kozlov V.G., Shchipitsyn V.D. Lift force acting on a cylindrical body in a fluid near the boundary of a cavity performing translational vibrations. J. Appl. Mech. Tech. Phys., 2014, vol. 55, no. 5, pp. 773–780. doi: 10.1134/S002189441405006X.

27. Alabuzhev A.A. Behavior of a cylindrical bubble under vibrations. Vychisl. Mekh. Sploshnykh Sred, 2014, vol. 7, no. 2, pp. 151–161. doi: 10.7242/1999-6691/2014.7.2.16. (In Russian)

28. Sennitskii V.L. On a prescribed orientation of a solid inclusion in a viscous fluid. Sib. Zh. Ind. Mat., 2015, vol. 18, no. 1, pp. 123–128. doi: 10.17377/SIBJIM.2015.18.110. (In Russian)

29. Kozlov V., Vlasova O. The repulsion of flat body from the wall of vibrating container filled with liquid // Microgravity Sci. Technol. 2015. V. 27, No 4. P. 297–303. doi: 10.1007/s12217-015-9460-y.

30. Kozlov N.V., Vlasova O.A. Behaviour of a heavy cylinder in a horizontal cylindrical liquid-filled cavity at modulated rotation // Fluid Dyn. Res. 2016. V. 48, No 5. Art. 055503. doi: 10.1088/0169-5983/48/5/055503.

31. Sennitskii V.L. Predominantly unidirectional rotation of a solid body and a viscous liquid. J. Appl. Ind. Math., 2017, vol. 11, no. 2, pp. 284–288. doi: 10.1134/S1990478917020144.

32. Vlasova O.A., Kozlov V.G., Kozlov N.V. Lift force acting on a heavy solid in a rotating liquid-filled cavity with a time-varying rotation rate. J. Appl. Mech. Tech. Phys., vol. 59, no. 2, pp. 219–228. doi: 10.1134/S0021894418020050.

33. Konovalov V.V., Lyubimova T.P. Numerical study of the effect of vibrations on the interaction in an ensemble of gas bubbles and solid particles in a liquid. Vychisl. Mekh. Sploshnykh Sred, 2019, vol. 12, no. 1, pp. 48–56. doi: 10.7242/1999-6691/2019.12.1.5. (In Russian)

34. Shchipitsyn V.D. Vibrations of a nonaxisymmetric cylinder in a cavity filled with liquid and performing rotational oscillations. Tech. Phys. Lett., 2020, vol. 46, no. 8, pp. 771–774. doi: 10.1134/S1063785020080143.

35. Konovalov V.V., Lyubimova T.P. Influence of acoustic vibrations on the interaction of a gas bubble and a solid particle in a liquid. Permsk. gidrodinam. nauchn. chten. Sb. statei po mater. VIII Vserossiisk. konf., posvyashch. pamyati prof. G.Z. Gershuni, E.M. Zhukhovitskogo i D.V. Lyubimova [Scientific Lectures on Hydrodynamics in Perm: Proc. VIII All-Russ. Conf. in Memory of Professors G.Z. Gershuni, E.M. Zhukhovitskii, and D.V. Lyubimov]. Lyubimova T.P. (Ed.). Perm, PGNIU, 2022, pp. 254–261. (In Russian)

36. Kapitza P.L. Pendulum with a vibrating suspension. Usp. Fiz. Nauk, 1951, vol. 44, no. 1, pp. 7–20. doi: 10.3367/UFNr.0044.195105b.0007. (In Russian)

37. Kryloff N.M., Bogoliuboff N.N. Vvedenie v nelineinuyu mekhaniku [Introduction to Non-Linear Mechanics]. Moscow, Izhevsk, NITs “Regulyarn. Khaot. Din.”, 2004. 352 p. (In Russian)

38. Bogoliubov N.N., Mitropolsky Y.A. Asimptoticheskie metody v teorii nelineinykh kolebanii [Asymptotic Methods in the Theory of Non-Linear Oscillations]. Moscow, GIF-ML, 1958. 408 p. (In Russian)


Review

For citations:


Sennitskii V.L. On the motion of a viscous liquid with a free boundary. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(1):99-110. (In Russ.) https://doi.org/10.26907/2541-7746.2024.1.99-110

Views: 181


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)