Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Formation control of unmanned aerial vehicle swarms for outdoor monitoring in search and rescue tasks

https://doi.org/10.26907/2541-7746.2025.4.786-805

Abstract

Advancements in robotics have expanded a use of unmanned aerial vehicle (UAV) swarms in critical tasks such as disaster response, including search and rescue operations during floods, hurricanes, landsliding, and earthquakes. Swarm formation control stands as a critical challenge in UAV swarm control. In this article, a simple and resource-efficient method for addressing collisions within swarm formations during outdoor missions is proposed, along with a set of formations designed for various task requirements. The proposed algorithm is implemented using the Robot Operating System (ROS) for a swarm of ten PX4-LIRS UAVs. Experiments conducted in the Gazebo simulator demonstrated the algorithm’s effectiveness, with the quantitative results presented through mean and standard deviations of the absolute positioning error measurements.

About the Authors

O. V. Frolov
HSE University
Russian Federation

Oleg V. Frolov, Undergraduate Student



R. N. Safin
Kazan Federal University
Russian Federation

Ramil N. Safin, Senior Lecturer



T. G. Tsoy
Kazan Federal University
Russian Federation

Tatyana G. Tsoy, PhD, Senior Lecturer



E. A. Martinez-Garcia
Universidad Aut´onoma de Ciudad Ju´arez
Mexico

Edgar A. Martinez-Garcia, PhD, Professor



E. A. Magid
Kazan Federal University; HSE University
Russian Federation

Evgeni A. Magid, PhD, Professor, Head of Intelligent Robotics Department



References

1. Papyan N., Kulhandjian M., Kulhandjian H., Aslanyan L. AI-based drone assisted human rescue in disaster environments: Challenges and opportunities. Pattern Recognit. Image Anal., 2024, vol. 34, no. 1, pp. 169–186. https://doi.org/10.1134/S1054661824010152.

2. Haddad M.N., Santos A.C., Duhamel C., Coco A.A. Intelligent drone swarms to search for victims in post-disaster areas. Sensors, 2023, vol. 23, no. 23, art. 9540. https://doi.org/10.3390/s23239540.

3. Catala-Roman P., Segura-Garcia J., Dura E., Navarro-Camba E.A., Alcaraz-Calero J.M., Garcia-Pineda M. AI-based autonomous UAV swarm system for weed detection and treatment: Enhancing organic orange orchard efficiency with agriculture 5.0. Internet Things, 2024, vol. 28, art. 101418. https://doi.org/10.1016/j.iot.2024.101418.

4. Munawar H.S., Inam H., Ullah F., Qayyum S., Kouzani A.Z., Mahmud M.P. Towards smart healthcare: UAV-based optimized path planning for delivering COVID-19 self-testing kits using cutting edge technologies. Sustainability, 2021, vol. 13, no. 18, art. 10426. https://doi.org/10.3390/su131810426.

5. Zakiev A., Tsoy T., Magid E. Swarm robotics: Remarks on terminology and classification. In: Ronzhin A., Rigoll G., Meshcheryakov R. (Eds.) Interactive Collaborative Robotics (ICR 2018). Ser.: Lecture Notes in Computer Science. Vol. 11097. Cham, Springer, 2018, pp. 291–300. https://doi.org/10.1007/978-3-319-99582-3_30.

6. Rubenstein M., Cornejo A., Nagpal R. Programmable self-assembly in a thousand-robot swarm. Science, 2014, vol. 345, no. 6198, pp. 795–799. https://doi.org/10.1126/science.1254295.

7. Chen W., Zhu J., Liu J., Guo H. A fast coordination approach for large-scale drone swarm. J. Network Comput. Appl., 2024, vol. 221, art. 103769. https://doi.org/10.1016/j.jnca.2023.103769.

8. Glantz E.J., Ritter F.E., Gilbreath D., Stager S.J., Anton A., Emani R. UAV use in disaster management. ISCRAM 2020: Proc. 17th Int. Conf. on Information Systems for Crisis Response and Management. Vol. 2020-May. Hughes A.L., McNeill F., Zobel C.W. (Eds.). Blacksburg, VA, ISCRAM, 2020, pp. 914–921.

9. Ma J., Guo D., Bai Y., Svinin M., Magid E. A vision-based robust adaptive control for caging a flood area via multiple UAVs. Proc. 2021 18th Int. Conf. on Ubiquitous Robots (UR). Gangneung, IEEE, 2021, pp. 386–391. https://doi.org/10.1109/UR52253.2021.9494698.

10. Bushnaq O.M., Mishra D., Natalizio E., Akyildiz I.F. Chapter 9 – Unmanned aerial vehicles (UAVs) for disaster management. In: Denizli A., Alencar M.S., Nguyen T.A., Motaung D.E. (Eds.) Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention. Elsevier, 2022, pp. 159–188. https://doi.org/10.1016/B978-0-323-91166-5.00013-6.

11. Zhu F., Lu Y.Y., Yang J. Collaborative control technology and prospects of drone swarms in earthquake emergency rescue scenarios. Proc. 2024 Asia Pac. Conf. on Computing Technologies, Communications and Networking (CTCNet’24). New York, NY, Assoc. Comput. Mach., 2024, pp. 83–91. https://doi.org/10.1145/3685767.3685782.

12. Arnold R.D., Yamaguchi H., Tanaka T. Search and rescue with autonomous flying robots through behavior-based cooperative intelligence. J. Int. Humanitarian Action, 2018, vol. 3, no. 1, art. 18. https://doi.org/10.1186/s41018-018-0045-4.

13. Horyna J., Baca T., Walter V., Albani D., Hert D., Ferrante E., Saska M. Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication. Auton. Robots, 2023, vol. 47, no. 1, pp. 77–93. https://doi.org/10.1007/s10514-022-10066-5.

14. Ouyang Q., Wu Z., Cong Y., Wang Z. Formation control of unmanned aerial vehicle swarms: A!comprehensive review. Asian J. Control, 2023, vol. 25, no. 1, pp. 570–593. https://doi.org/10.1002/asjc.2806.

15. Perez-Carabaza S., Besada-Portas E., Lopez-Orozco J.A., de la Cruz J.M. Ant colony optimization for multi-UAV minimum time search in uncertain domains. Appl. Soft Comput., 2018, vol. 62, pp. 789–806. https://doi.org/10.1016/j.asoc.2017.09.009.

16. Lv Y., Yang X., Yang Y., Pan S., Xin C. Formation control of UAVs based on artificial potential field. Proc. 2018 2nd Int. Conf. on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018). Ser.: MATEC Web of Conferences. Vol. 189. EDP Sci., 2018, art. 10018. https://doi.org/10.1051/matecconf/201818910018.

17. Bu Y., Yan Y., Yang Y. Advancement challenges in UAV swarm formation control: A comprehensive review. Drones, 2024, vol. 8, no. 7, art. 320. https://doi.org/10.3390/drones8070320.

18. Quigley M., Gerkey B., Conley K., Faust J., Foote T., Leibs J., Berger E., Wheeler R., Ng A. ROS: An open-source Robot Operating System. Workshops at the IEEE Int. Conf. on Robotics and Automation. Vol 3. Kobe, 2009. 6 p.

19. Koenig N., Howard A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. Proc. 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). Vol. 3. Sendai, 2004, pp. 2149–2154. https://doi.org/10.1109/IROS.2004.1389727.

20. Khazetdinov A., Zakiev A., Tsoy T., Svinin M., Magid E. Embedded ArUco: A novel approach for high precision UAV landing. Proc. 2021 Int. Sib. Conf. on Control and Communications (SIBCON). Kazan, IEEE, 2021, pp. 1–6. https://doi.org/10.1109/SIBCON50419.2021.9438855.

21. Li X., Zhou H. UAV formation centralized control method under cooperative flight missions. Proc. 2023 5th Int. Conf. on Robotics, Intelligent Control and Artificial Intelligence (RICAI). Hangzhou, IEEE, 2023, pp. 366–369. https://doi.org/10.1109/RICAI60863.2023.10489720.

22. Xia B., Mantegh I., Xie W. Decentralized UAV swarm control: A multi-layered architecture for integrated flight mode management and dynamic target interception. Drones, 2024, vol. 8, no. 8, art. 350. https://doi.org/10.3390/drones8080350.

23. Anderson B.D., Fidan B., Yu C., Walle D. UAV formation control: Theory and application. In: Blondel V.D., Boyd S.P., Kimura H. (Eds.) Recent Advances in Learning and Control. Ser.: Lecture Notes in Control and Information Sciences. Vol. 371. London, Springer, 2008, pp. 15–33. https://doi.org/10.1007/978-1-84800-155-8_2.

24. Sanju Kumar N.T., Padmapriya M., Reddy J.P., Rajalakshmi P. Centralized and decentralized based swarm of leader and follower formation of autonomous. Proc. 2023 IEEE 20th India Council Int. Conf. (INDICON). Hyderabad, IEEE, 2023, pp. 1433–1439. https://doi.org/10.1109/INDICON59947.2023.10440924.

25. Chen H., Wang X., Shen L., Cong Y. Formation flight of fixed-wing UAV swarms: A group-based hierarchical approach. Chin. J. Aeronaut., 2021, vol. 34, no. 2, pp. 504–515. https://doi.org/10.1016/j.cja.2020.03.006.

26. de Souza Neto A.M., Romero R.A.F. A decentralized approach to drone formation based on leader-follower technique. Proc. 2019 Lat. Am. Robotics Symp. (LARS), 2019 Braz. Symp. on Robotics (SBR), and 2019 Workshop on Robotics in Education (WRE). Rio Grande, IEEE, 2019, pp. 358–362. https://doi.org/10.1109/LARS-SBR-WRE48964.2019.00069.

27. Alonso-Mora J., Montijano E., Schwager M., Rus D. Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus. Proc. 2016 IEEE Int. Conf. on Robotics and Automation (ICRA). Stockholm, IEEE, 2016, pp. 5356–5363. https://doi.org/10.1109/ICRA.2016.7487747.

28. Tong B., Wei C., Shi Y. Fractional order Darwinian pigeon-inspired optimization for multi-UAV swarm controller. Guid., Navig. Control, 2022, vol. 2, no. 2, art. 2250010. https://doi.org/10.1142/S2737480722500108.

29. Pan Z., Zhang C., Xia Y., Xiong H., Shao X. An improved artificial potential field method for path planning and formation control of the multi-UAV systems. IEEE Trans. Circuits Syst. II: Express Briefs, 2022, vol. 69, no. 3, pp. 1129–1133. https://doi.org/10.1109/TCSII.2021.3112787.

30. Fu X., Zhi C., Wu D. Obstacle avoidance and collision avoidance of UAV swarm based on improved VFH algorithm and information sharing strategy. Comput. Ind. Eng., 2023, vol. 186, art. 109761. https://doi.org/10.1016/j.cie.2023.109761.

31. Sastre C., Wubben J., Calafate C.T., Cano J.C., Manzoni P. Collision-free swarm take-off based on trajectory analysis and UAV grouping. Proc. 2022 IEEE 23rd Int. Symp. on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). Belfast, IEEE, 2022, pp. 477–482. https://doi.org/10.1109/WoWMoM54355.2022.00074.

32. Michieletto G., Formaggio F., Cenedese A., Tomasin S. Robust localization for secure navigation of UAV formations under GNSS spoofing attack. IEEE Trans. Autom. Sci. Eng., 2023, vol. 20, no. 4, pp. 2383–2396. https://doi.org/10.1109/TASE.2022.3208662.

33. Ma L., Meng D., Huang X., Zhao S. Vision-based formation control for an outdoor UAV swarm with hierarchical architecture. IEEE Access, 2023, vol. 11, pp. 75134–75151. https://doi.org/10.1109/ACCESS.2023.3296603.

34. Frolov O., Safin R., Tsoy T., Martinez-Garcia E.A., Magid E. UAV swarm formation control for outdoor surveillance tasks. In: Shmaliy Y.S. (Ed.) Proc. 8th Int. Conf. on Computing, Control and Industrial Engineering (CCIE2024). Ser.: Lecture Notes in Electrical Engineering. Vol. 1252. Singapore, Springer, 2024, pp. 364–372. https://doi.org/10.1007/978-981-97-6934-6_42.

35. Kostenetskiy P.S., Chulkevich R.A., Kozyrev V.I. HPC resources of the higher school of economics. J. Phys.: Conf. Ser., 2021, vol. 1740, no. 1, art. 012050. https://doi.org/10.1088/1742-6596/1740/1/012050.

36. Imamov N., Abbyasov B., Tsoy T., Mart´ınez-Garc´ıa, E.A., Magid E. (2024). Evaluation of a weather plugin in Gazebo: A case-study of a wind influence on PX4-based UAV performance. In: Ronzhin A., Savage J., Meshcheryakov R. (Eds) Interactive Collaborative Robotics. ICR 2024. Ser.: Lecture Notes in Computer Science. Vol. 14898. Cham, Springer, 2024, pp. 344–356. https://doi.org/10.1007/978-3-031-71360-6_26.

37. Magid E., Abbyasov B., Lavrenov R., Tsoy T., Martinez-Garcia E. A., Svinin M. LIRSUSim: A Gazebo-based tool for modeling urban environments and sensory data uncertainties. Lobachevskii J. Math., 2025, vol. 46, no. 5, pp. 2382–2395. https://doi.org/10.1134/S1995080225607167.


Review

For citations:


Frolov O.V., Safin R.N., Tsoy T.G., Martinez-Garcia E.A., Magid E.A. Formation control of unmanned aerial vehicle swarms for outdoor monitoring in search and rescue tasks. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(4):786-805. https://doi.org/10.26907/2541-7746.2025.4.786-805

Views: 58


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)