Mathematically rigorous formulation of contact problems for thin-walled structural elements, numerical and analytical methods, and solution results
https://doi.org/10.26907/2541-7746.2025.4.719-743
Abstract
A mathematically rigorous formulation of contact problems in the theory of plates and shells is justified. An overview of the recently solved static and dynamic problems, their analytical and numerical solutions, is carried out, and the results of the obtained solutions are analyzed. Additionally, examples are provided of such problems where the correct determination of contact stress distribution is fundamentally important.
About the Author
S. A. KuznetsovRussian Federation
Sergej A. Kuznetsov, Cand. Sci. (Physics and Mathematics), Associate Professor, Department of Theoretical Mechanics
References
1. Grigolyuk E.I., Tolkachev V.M. Kontaktnye zadachi teorii plastin i obolochek [Contact Problems in the Theory of Plates and Shells]. Moscow, Mashinostroenie, 1980. 411 p. (In Russian)
2. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods of Ill-Posed Problems Solving]. Moscow, Nauka, 1979. 228 p. (In Russian)
3. Popov G.Ya. On contact problems for shells and plates. Tr. Х Vsesoyuzn. konf. po teorii obolochek i plastin. Kutaisi, 22–29 sent. 1975 g. [Proc. X All-Union Conf. on Shell and Plate Theory. Kutaisi, September 22–29, 1975]. Vol. 1. Tbilisi, Metsniereba, 1975, pp. 244–250. (In Russian)
4. Grigolyuk E.I., Tolkachev V.M. Cylindrical bending of a plate by rigid stamps. J. Appl. Math. Mech., 1975, vol. 39, pp. 841–848. https://doi.org/10.1016/0021-8928(75)90124-0.
5. Blokh M.V., Tsukrov S.Ya. Effect of changing the wall thickness on the axisymmetric contact between thin cylindrical shells. Prikl. Mekh., 1974, vol. 10, no. 4, pp. 31–37. (In Russian)
6. Karasev S.N., Artyukhin Yu.P. Influence of transverse shear and compression on the distribution of contact stresses. In: Issled. po teor. plastin i obolochek [Investigations into the Theory of Plates and Shells]. Vol. 12. Kazan, Izd. Kazan. Univ., 1976, pp. 68–76. (In Russian)
7. Artyukhin Yu.P. One-dimensional contact problems in the theory of shells. Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1981, no. 3, pp. 55–65. (In Russian)
8. Artyukhin Yu.P. One-dimensional contact problems for thin-walled transversely isotropic structural elements. In: Issled. po teor. plastin i obolochek [Investigations into the Theory of Plates and Shells]. Vol. 13. Kazan, Izd. Kazan. Univ., 1978, pp. 62–82. (In Russian)
9. Kuznetsov S.A. Non-axisymmetric contact problem for a thin plate on an elastic foundation in case of an eccentrically positioned stamp. Mekhan. sploshn. sred: tez. dokl. Resp. nauch.-tekhn. konf. [Mechanics of Continuous Media: Proc. Repub. Sci.-Techn. Conf.]. Naberezhnye Chelny, 1982, p. 105. (In Russian)
10. Kuznetsov S.A. Solving integral equations of multiply connected contact problems by reducing them to a boundary value problem. XI Vserosiisk. s”ezd po fundament. probl. teor. i prikl. mekhan.: sb. dokl. [Proc. XI All-Russ. Congr. on Fundamental Problems of Theoretical and Applied Mechanics]. Akhmetov D.Yu., Gerasimov A.N., Khaidarov Sh.M. (Compil.). 2015, pp. 2145–2147. (In Russian)
11. Egorov D.L., Kuznetsov S.A. A numerical method of solving contact problems for plates and stamps. Aktualizatsiya sotsial’no-ekonomicheskogo i estestvennonauchnogo obrazovaniya v nauke i predprinimatel’stve: Mater. II Mezhdunarodn. stud.-asp. foruma [Actualization of SocioEconomic and Natural Science Education in Science and Entrepreneurship: Proc. II Int. Forum for Students and Postgraduate Students]. Kazan, Otechestvo, 2009, pp. 42–46. (In Russian)
12. Kuznetsov S.A., Krasnov S.V., Morenko Ya.V., Smetanina E.V., Starozholova O.V. A contact problem on the interaction of a moderately thick plate on an elastic foundation with a rigid body. Supervychisleniya i matematicheskoe modelirovanie. Tr. XVII Mezhdunarodn. konf. [Supercomputing and Mathematical Modeling. Proc. XVII Int. Conf.]. Shagaliev R.M. (Ed.). Sarov, RFYaTs-VNIIEF, 2019, pp. 324–329. (In Russian)
13. Tochkasova M.A., Kuznetsov S.A. A contact problem on the interaction of a plate with a rigid overlay under harmonic vibrations. Tr. matem. tsentra im. N.I. Lobachevskogo: Mater. VII molod. nauch. shk.-konf. [Proceedings of the Lobachevskii Mathematical Center: Mater. VII Sch.-Conf. for Young Scientists]. Vol. 37. Kazan, Izd. Kazan. Univ., 2008, pp. 111–113. (In Russian)
14. Volmir A.S. Nelineinaya dinamika plastinok i obolochek [The Nonlinear Dynamics of Plates and Shells]. Moscow, Nauka, 1972. 432 p. (In Russian)
15. Konoplev Yu.G., Kuznetsov S.A., Sachenkov A.A., Tochkasova M.A. Investigation of contact interaction of a rectangular plate with a hard cover plate under harmonic vibrations. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2011, vol. 153, no. 4, pp. 98–111. (In Russian)
16. Kuznetsov S.A. Axisymmetric contact between a cylindrical shell with a rigid insert in the presence of wear. In: Issled. po teor. plastin i obolochek [Investigations into the Theory of Plates and Shells]. Vol. 20. Kazan, Izd. Kazan. Univ., 1990, pp. 191–197. (In Russian)
17. Korovchinskii M.V. Local contact of elastic bodies during surface wear. In: Kontaktnoe vzaimodeistvie tverdykh tel i raschet sil treniya i iznosa: sb. statei [Contact Interaction of Solids and Calculation of Friction and Wear: A Collection of Articles]. Moscow, Nauka, 1971, pp. 130–140. (In Russian)
18. Timoshenko S.P. Plastinki i obolochki [Plates and Shells]. Moscow, Gostekhizdat, 1948. 460 p. (In Russian)
19. Соst T.L. Approximate Laplase transform inversions in viscoelastic stress analysis. AIAA J., 1964, vol. 2, no. 12, pp. 2157–2166. https://doi.org/10.2514/3.2757.
20. Egorov D.L., Kuznetsov S.A. Investigation of contact interaction of round plates with stamps based on numerical-analytical technique. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2010, vol. 152, no. 4, pp. 127–134. (In Russian)
Review
For citations:
Kuznetsov S.A. Mathematically rigorous formulation of contact problems for thin-walled structural elements, numerical and analytical methods, and solution results. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(4):719-743. (In Russ.) https://doi.org/10.26907/2541-7746.2025.4.719-743





























