DFT prediction of metallic conductivity and experimental investigation of air-induced degradation effects in quasi-one-dimensional antiferromagnet RbFeSe2
https://doi.org/10.26907/2541-7746.2025.4.705-718
Abstract
A comprehensive study, combining density functional theory (DFT) calculations and experimental investigations, of the quasi-one-dimensional antiferromagnet RbFeSe2 is carried out. The non-spinpolarized ab initio calculations show that its metallic conductivity is above the N´eel temperature 𝑇𝑁 = 248 K, with no gap in the electron density of states at the Fermi energy. The experimental four-probe conductivity measurements yet reveal an insulating behavior throughout the temperature range of 4–300 K. Following these measurements, an X-ray diffraction analysis is conducted. Its results demonstrate a severe degradation of the sample after air exposure (7–9 min), with the reduction in selenium occupancy by more than 20 % below stoichiometric values and the formation of elemental selenium phase (𝑃3221 space group). The discrepancy between theoretical predictions and the obtained experimental results is attributed to the rapid air-induced oxidation leading to structural defects and electron localization. The results obtained highlight the critical importance of rigorous atmospheric control when studying iron chalcogenides, provide quantitative insights into the degradation mechanisms affecting electronic properties, and indicate that standard DFT approaches may overestimate metallicity in quasi-one-dimensional systems, particularly when structural defects are present.
Keywords
About the Authors
A. G. KiiamovRussian Federation
Airat G. Kiiamov, Cand. Sci. (Physics and Mathematics), Senior Researcher
M. D. Kuznetsov
Russian Federation
Maksim D. Kuznetsov, Postgraduate Student
L. R. Tagirov
Russian Federation
Lenar R. Tagirov, Dr. Sci. (Physics and Mathematics), Leading Researcher
M. Hemmida
Germany
Mamoun Hemmida, PhD, Academic Staff, Experimental Physics V
H.-A. Krug von Nidda
Germany
Hans-Albrecht Krug von Nidda, Dr. Habil., Privatdozent, Experimental Physics V
D. Croitori
Moldova, Republic of
Dorina Croitori, PhD, Senior Scientific Researcher
Z. Yu. Seidov
Azerbaijan
Zakir Yu. Seidov, PhD, Senior Researcher, Experimental Physics V; Senior Researcher
V. Tsurkan
Moldova, Republic of
Vladimir Tsurkan, PhD, Senior Researcher, Experimental Physics V; Principal Scientific Researcher
D. A. Tayurskii
Russian Federation
Dmitrii A. Tayurskii, Dr. Sci. (Physics and Mathematics), Full Professor, First Vice-Rector – Vice-Rector for Research
References
1. Hsu F.-C., Luo J.-Y., Yeh K.-W., Chen T.-K., Huang T.-W., Wu P.M., Lee Y.-C., Huang Y.-L., Chu Y.-Y., Yan D.-C., Wu M.-K. Superconductivity in the PbO-type structure 𝛼-FeSe. Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 38, pp. 14262–14264. https://doi.org/10.1073/pnas.0807325105.
2. Mizuguchi Y., Takano Y. Review of Fe chalcogenides as the simplest Fe-based superconductor. J. Phys. Soc. Jpn., 2010, vol. 79, no. 10, art. 102001. https://doi.org/10.1143/JPSJ.79.102001.
3. Johnston D.C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys., 2010, vol. 59, no. 6, pp. 803–1061. https://doi.org/10.1080/00018732.2010.513480.
4. Mizokawa T., Sudayama T., Wakisaka Y., Ootsuki D., Imaizumi M., Noji T., Koike Y., Pyon S., Kudo K., Nohara M., Anzai H., Arita M., Namatame H., Taniguchi M., Saini N.L. Orbital degeneracy, Jahn–Teller effect, and superconductivity in transition-metal chalcogenides. J. Supercond. Novel Magn., 2012, vol. 25, no. 5, pp. 1343–1346. https://doi.org/10.1007/s10948-012-1626-x.
5. Mousavi T., Grovenor C.R.M., Speller S.C. Structural parameters affecting superconductivity in iron chalcogenides: A review. Mater. Sci. Technol., 2014, vol. 30, no. 15, pp. 1929–1943. https://doi.org/10.1179/1743284714Y.0000000551.
6. Glasbrenner J.K. , Mazin I.I., Jeschke H.O., Hirschfeld P.J., Fernandes R.M., Valent´ı R. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys., 2015, vol. 11, no. 11, pp. 953–958. https://doi.org/10.1038/nphys3434.
7. Chang C.-C., Chen T.K., Lee W.C., Lin P.H., Wang M.J., Wen Y.C., Wu P.M., Wu M.K. Superconductivity in Fe-chalcogenides. Phys. C: Supercond. Its Appl., 2015, vol. 514, pp. 423–434. https://doi.org/10.1016/j.physc.2015.02.011.
8. Mizuguchi Y. Recent advances in layered metal chalcogenides as superconductors and thermoelectric materials: Fe-based and Bi-based chalcogenides. Chem. Rec., 2016, vol. 16, no. 2, pp. 633–651. https://doi.org/10.1002/tcr.201500263.
9. Si Q., Yu R., Abrahams E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater., 2016, vol. 1, no. 4, art. 16017. https://doi.org/10.1038/natrevmats.2016.17.
10. Li L., Parker D.S., dela Cruz C.R., Sefat A.S. Multi-layered Chalcogenides with potential for magnetism and superconductivity. Phys. C: Supercond. Its Appl., 2016, vol. 531, pp. 25–29. https://doi.org/10.1016/j.physc.2016.10.005.
11. Vasiliev A., Volkova O., Zvereva E., Markina M. Milestones of low-D quantum magnetism. npj Quantum Mater., 2018, vol. 3, no. 1, art. 18. https://doi.org/10.1038/s41535-018-0090-7.
12. Furdyna J.K., Dong S.-N., Lee S., Liu X., Dobrowolska M. Magnetic chalcogenides in 3 and lower dimensions. Phys. C: Supercond. Its Appl., 2018, vol. 549, pp. 44–53. https://doi.org/10.1016/j.physc.2018.02.049.
13. Vasiliev A.N., Volkova O.S., Zvereva E.A., Markina M.M. Low-Dimensional Magnetism. Riecansky V.E. (Trans.). Boca Raton, FL, CRC Press, 2019. 314 p. https://doi.org/10.1201/9780429288319.
14. Gupta R.K., Mishra S.R., Nguyen T.A. Fundamentals of Low Dimensional Magnets. Boca Raton, FL, CRC Press, 2022. 380 p. https://doi.org/10.1201/9781003197492.
15. Xu Y., Awschalom D.D., Nitta J. Handbook of Spintronics. Dordrecht, Springer, 2016. xxiv, 1609 p. https://doi.org/10.1007/978-94-007-6892-5.
16. Gupta R.K., Mishra S.R., Nguyen T.A. Emerging Applications of Low Dimensional Magnets. Boca Raton, FL, CRC Press, 2022. 334 p. https://doi.org/10.1201/9781003196952.
17. Fernandes R.M., Coldea A.I., Ding H., Fisher I.R., Hirschfeld P.J., Kotliar G. Iron pnictides and chalcogenides: A new paradigm for superconductivity. Nature, 2022, vol. 601, no. 7891, pp. 35–44. https://doi.org/10.1038/s41586-021-04073-2.
18. Opaˇci´c M.R., Lazarevi´c N.Z. Lattice dynamics of iron chalcogenides – Raman scattering study. ˇ J. Serb. Chem. Soc., 2017, vol. 82, no. 9, pp. 957–983. https://doi.org/10.2298/JSC170321077O.
19. Kreisel A., Hirschfeld P.J., Andersen B.M. On the remarkable superconductivity of FeSe and its close cousins. Symmetry, 2020, vol. 12, no. 9, art. 1402. https://doi.org/10.3390/sym12091402.
20. Yi M., Liu Z.-K., Zhang Y., Yu R., Zhu J.-X., Lee J.J., Moore R.G., Schmitt F.T., Li W., Riggs S.C., Chu J.-H., Lv B., Hu J., Hashimoto M., Mo S.-K., Hussain Z., Mao Z.Q., Chu C.W., Fisher I.R., Si Q., Shen Z.-X., Lu D.H. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. Nat. Commun., 2015, vol. 6, no. 1, art. 7777. https://doi.org/10.1038/ncomms8777.
21. Matsuura K., Roppongi M., Qiu M., Sheng Q., Cai Y., Yamakawa K., Guguchia Z., Day R.P., Kojima K.M., Damascelli A., Sugimura Y., Saito M., Takenaka T., Ishihara K., Mizukami Y., Hashimoto K., Gu Y., Guo Y., Fu L., Zhang Z., Ning F., Zhao G., Dai G., Jin C., Beare J.W., Luke G.M., Uemura Y.J., Shibauchi T. Two superconducting states with broken time-reversal symmetry in FeSe 1−𝑥 S𝑥 . Proc. Natl. Acad. Sci. USA, 2023, vol. 120, no. 21, art. e2208276120. https://doi.org/10.1073/pnas.2208276120.
22. Ke F., Niu S., Feng J., Yin K., Han M., Yang H., Wang B.Y., Celeste A., Jia C., Chen B., Wang L., Hwang H.Y., Tian Y., Mao W.L., Lin Y. Superconductivity in compressed quasi–one-dimensional face-sharing hexagonal perovskite chalcogenides. Sci. Adv., 2025, vol. 11, no. 37, art. eadv1894. https://doi.org/10.1126/sciadv.adv1894.
23. Xu Z., Schneeloch J.A., Wen J., Boˇzin E.S., Granroth G.E., Winn B.L., Feygenson M., Birgeneau R.J., Gu G., Zaliznyak I.A., Tranquada J.M., Xu G. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe 1−𝑥 Se𝑥 . Phys. Rev. B, 2016, vol. 93, no. 10, art. 104517. https://doi.org/10.1103/PhysRevB.93.104517.
24. Wang B., Yao Y., Hong W., Hong Z., He X., Wang T., Jian C., Ju Q., Cai Q., Sun Z., Liu W. The controllable synthesis of high-quality two-dimensional iron sulfide with specific phases. Small, 2023, vol. 19, no. 23, art. 2207325. https://doi.org/10.1002/smll.202207325.
25. Wu H., Lu S., Xu S., Zhao J., Wang Y., Huang C., Abdelkader A., Wang W.A., Xi K., Guo Y., Ding S., Gao G., Kumar R.V. Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. ACS Nano, 2021, vol. 15, no. 2, pp. 2506–2519. https://doi.org/10.1021/acsnano.0c06667.
26. Mele P. Superconducting properties of iron chalcogenide thin films. Sci. Technol. Adv. Mater., 2012, vol. 13, no. 5, art. 054301. https://doi.org/10.1088/1468-6996/13/5/054301.
27. Krzton-Maziopa A. Intercalated iron chalcogenides: Phase separation phenomena and superconducting properties. Front. Chem., 2021, vol. 9, art. 640361. https://doi.org/10.3389/fchem.2021.640361.
28. Bronger W., Kyas A., M¨uller P. The antiferromagnetic structures of KFeS2 , RbFeS2 , KFeSe 2 , and RbFeSe 2 and the correlation between magnetic moments and crystal field calculations. J. Solid State Chem., 1987, vol. 70, no. 2, pp. 262–270. https://doi.org/10.1016/0022-4596(87)90065-X.
29. Seidov Z., Krug von Nidda H.-A., Tsurkan V., Filippova I.G., G¨unther A., Gavrilova T.P., Vagizov F.G., Kiiamov A.G., Tagirov L.R., Loidl A. Magnetic properties of the covalent chain antiferromagnet RbFeSe 2 . Phys. Rev. B, 2016, vol. 94, no. 13. art. 134414. https://doi.org/10.1103/PhysRevB.94.134414.
30. Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. Online Arch., 1964, vol. 136, no. 3B, pp. B864–B871. https://doi.org/10.1103/PhysRev.136.B864.
31. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
32. Bl¨ochl P.E. Projector augmented-wave method. Phys. Rev. B, 1994, vol. 50, no. 24, 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953.
33. Kresse G., Furthm¨uller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, vol. 54, no. 16, pp. 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169.
34. Kiiamov A.G., Lysogorskiy Y.V., Vagizov F.G., Tagirov L.R., Tayurskii D.A., Croitori D., Tsurkan V., Loidl A. M¨ossbauer spectroscopy evidence of intrinsic non-stoichiometry in iron telluride single crystals. Ann. Phys., 2017, vol. 529, no. 4, art. 1600241. https://doi.org/10.1002/andp.201600241.
35. Lysogorskiy Y.V., Kijamov A.G., Nedopekin O.V., Tayurskii D.A. Ab initio studying of topological insulator Bi 2 Se 3 under the stress. J. Phys.: Conf. Ser., 2012, vol. 394, no. 1, art. 012022. https://doi.org/10.1088/1742-6596/394/1/012022.
36. Katsnelson M.I., Irkhin V.Yu. Metal-insulator transition and antiferromagnetism in the ground state of the Hubbard model. J. Phys. C: Solid State Phys., 1984, vol. 17, no. 24, art. 4291. https://doi.org/10.1088/0022-3719/17/24/011.
37. Bronger W., M¨uller P. Electrical and magnetic properties of KFeS2 single crystals. J. Inorg. Nucl. Chem., 1973, vol. 35, pp. 1891–1896.
38. Takahashi H., Akimitsu J. Metal-insulator transition in KFeS2 . Phys. Rev. B, 1998, vol. 57, pp. 15211–15218.
Review
For citations:
Kiiamov A.G., Kuznetsov M.D., Tagirov L.R., Hemmida M., Krug von Nidda H., Croitori D., Seidov Z.Yu., Tsurkan V., Tayurskii D.A. DFT prediction of metallic conductivity and experimental investigation of air-induced degradation effects in quasi-one-dimensional antiferromagnet RbFeSe2. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(4):705-718. https://doi.org/10.26907/2541-7746.2025.4.705-718





























