Preview

Ученые записки Казанского университета. Серия Физико-математические науки

Расширенный поиск

Эффективный метод анализа гибких пористых функционально-градиентных наноконических секторных панелей с учетом температурных и электрических полей

https://doi.org/10.26907/2541-7746.2025.4.689-704

Аннотация

На основе модифицированной моментной теории упругости разработана новая математическая модель состояния пористых функционально-градиентных (ПФГ) конических секторных микро-/нанопластин со свойствами, зависящими от температуры. Метод вариационных итераций применен для решения нелинейных дифференциальных уравнений, описывающих изгиб гибких конических (кольцевых) секторных пластин под действием термомеханической нагрузки. Он позволил получить практически точное решение при существенно меньших затратах машинного времени по сравнению с методами конечных разностей и конечных элементов.

Об авторе

Л. А. Калуцкий
Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук
Россия

Леонид Александрович Калуцкий, младший научный сотрудник

Новосибирск, Россия



Список литературы

1. Aghdam M.M., Shahmansouri N., Bigdeli K. Bending analysis of moderately thick functionally graded conical panels // Compos. Struct. 2011. V. 93, No 5. P. 1376–1384. https://doi.org/10.1016/j.compstruct.2010.10.020.

2. Aghdam M.M., Shahmansouri N., Mohammadi M. Extended Kantorovich method for static analysis of moderately thick functionally graded sector plates // Math. Comput. Simul. 2012. V. 86. P. 118–130. https://doi.org/10.1016/j.matcom.2010.07.029.

3. Fallah F., Khakbaz A. On an extended Kantorovich method for the mechanical behavior of functionally graded solid/annular sector plates with various boundary conditions // Acta Mech. 2017. V. 228, No 7. P. 2655–2674. https://doi.org/10.1007/s00707-017-1851-2.

4. Aghdam M.M., Mohammadi M., Erfanian V. Bending analysis of thin annular sector plates using extended Kantorovich method // Thin-Walled Struct. 2007. V. 45, No 12. P. 983–990. https://doi.org/10.1016/j.tws.2007.07.012.

5. Aghdam M.M., Babaei M.H. Bending analysis of curve-sided quadrilateral thin plates using extended Kantorovich method // Proc. 8th Int. Conf. on Computational Structures Technology. Stirlingshire: Civil-Comp Press, 2006. Art. 159. http://dx.doi.org/10.4203/ccp.83.159.

6. Demir A., Mermerta¸s V. A study on annular plates with radial through cracks by means of sector type element // J. Sound Vib. 2007. V. 300, Nos 3–5. P. 466–478. https://doi.org/10.1016/j.jsv.2006.03.057.

7. Shaterzadeh A., Behzad H., Shariyat M. Stability analysis of composite perforated annular sector plates under thermomechanical loading by finite element method // Int. J. Struct. Stab. Dyn. 2018. V. 18, No 7. Art. 1850100. https://doi.org/10.1142/S0219455418501006.

8. Khan A.H., Patel B.P. Nonlinear periodic response of bimodular laminated composite annular sector plates // Composites, Part B. 2019. V. 169. P. 96–108. https://doi.org/10.1016/j.compositesb.2019.03.061.

9. Demir ¸C., Ersoy H., Mercan K., Civalek O. ¨ Free vibration analysis of annular sector plates via conical shell equations // Curved Layered Struct. 2017. V. 4, No 1. P. 146–157. https://doi.org/10.1515/cls-2017-0011.

10. Babaei M., Asemi K., Kiarasi F. Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method // Mech. Based Des. Struct. Mach. 2023. V. 51, No 3. P. 1272–1296. https://doi.org/10.1080/15397734.2020.1864401.

11. Xia L., Wang R., Chen W., Asemi K., Tounsi A. The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity // Adv. Nano Res. 2023. V. 14, No 4. P. 375–389. https://doi.org/10.12989/anr.2023.14.4.375.

12. Jomehzadeh E., Saidi A.R., Atashipour S.R. An analytical approach for stress analysis of functionally graded annular sector plates // Mater. Des. 2009. V. 30, No 9. P. 3679–3685. https://doi.org/10.1016/j.matdes.2009.02.011.

13. Alavi S.H., Eipakchi H. An analytical approach for dynamic response of viscoelastic annular sector plates // Mech. Adv. Mater. Struct. 2022. V. 29, No 23. P. 3372–3386. https://doi.org/10.1080/15376494.2021.1896821.

14. Afshari H., Adab N. Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory // Mech. Based Des. Struct. Mach. 2022. V. 50, No 1. P. 184–205. https://doi.org/10.1080/15397734.2020.1713158.

15. Zheng J., Zhang C., Khan A., Sebaey T.A., Farouk N. On the asymmetric thermal stability of FGM annular plates reinforced with graphene nanoplatelets // Eng. Comput. 2022. V. 38, Suppl. 5. P. 4569–4581. https://doi.org/10.1007/s00366-021-01463-y.

16. Tahan N., Pavlovic M.N., Kotsovos M.D. Annular sector plates under in-plane loading: General symbolic solution and its application to the collinear compression case // J. Strain Anal. Eng. Des. 2004. V. 39, No 3. P. 299–313. https://doi.org/10.1243/030932404323042722.

17. Awrejcewicz J., Krysko V.A., Jr., Kalutsky L.A., Krysko V.A. Computing static behavior of flexible rectangular von K´arm´an plates in fast and reliable way // Int. J. Non-Linear Mech. 2022. V. 146. Art. 104162. https://doi.org/10.1016/j.ijnonlinmec.2022.104162.

18. Krysko V.A., Jr., Awrejcewicz J., Kalutsky L.A., Krysko V.A. Quantification of various reduced order modelling computational methods to study deflection of size-dependent plates // Comput. Math. Appl. 2023. V. 133. P. 61–84. https://doi.org/10.1016/j.camwa.2023.01.004.

19. Крысько А.В., Калуцкий Л.А., Захарова А.Н., Крысько В.А. Математическое моделирование пористых геометрически нелинейных металлических нанопластин с учетом влажности // Изв. ТПУ. 2023. Т. 334, № 9. С. 36–48.

20. Krysko A.V., Kalutsky L.A., Krysko V.A. Stress-strain state of a porous flexible rectangular FGM size-dependent plate subjected to different types of transverse loading: Analysis and numerical solution using several alternative methods. Thin-Walled Structures. 2024. V. 196. 111512. https://doi.org/10.1016/j.tws.2023.111512.

21. Karimipour I., Beni Y.T., Zeighampour H. Nonlinear size-dependent pull-in instability and stress analysis of thin plate actuator based on enhanced continuum theories including nonlinear effects and surface energy // Microsyst. Technol. 2018. V. 24, No 4. P. 1811–1839. https://doi.org/10.1007/s00542-017-3540-4.


Рецензия

Для цитирования:


Калуцкий Л.А. Эффективный метод анализа гибких пористых функционально-градиентных наноконических секторных панелей с учетом температурных и электрических полей. Ученые записки Казанского университета. Серия Физико-математические науки. 2025;167(4):689-704. https://doi.org/10.26907/2541-7746.2025.4.689-704

For citation:


Kalutsky L.A. An effective method for analyzing flexible porous functionally graded nanoconical sector panels taking into account temperature and electric fields. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(4):689-704. (In Russ.) https://doi.org/10.26907/2541-7746.2025.4.689-704

Просмотров: 33


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)