Numerical analysis of the dynamic response of a structure equipped with friction pendulum bearings
https://doi.org/10.26907/2541-7746.2025.4.675-688
Abstract
This article focuses on the implementation of a lightweight model of a friction pendulum bearing in the finite-element model of a base-isolated structure. The proposed approach appears as an alternative to a high-fidelity finite-element model. The model considers the slider moving on the sliding surface as a material point with three degrees of freedom. The equations of motion for the slider are derived by leveraging the Lagrangian formalism. The three-degrees-of-freedom model is compared with other available analytical approaches that can be employed to define the response of friction pendulum bearings, mainly unidirectional formulations. From the numerical experiments, the dynamic response of a structure with and without base isolation is obtained using a finite-element analysis. Acceleration time series, recorded during an earthquake, are employed as an input. The numerical results, in terms of displacement and acceleration evolutions, demonstrate the positive effect of seismic isolation on mitigating the risk of failure in the structure.
About the Author
T. ZhelyazovBulgaria
Todor Zhelyazov, PhD, Researcher
References
1. Kavyashree B.G., Patil S., Rao V.S. Review on vibration control in tall buildings: From the perspective of devices and applications. Int. J. Dyn. Control, 2021, vol. 9, no. 3, pp. 1316–1331. https://doi.org/10.1007/s40435-020-00728-6.
2. Naeim F., Kelly J.M. Design of Seismic Isolated Structures: From Theory to Practice. New York, NY, John Wiley & Sons, 1999. xiv, 290 p. https://doi.org/10.1002/9780470172742.
3. Zayas V.A., Low S.S., Mahin S.A. A simple pendulum technique for achieving seismic isolation. Earthquake Spectra, 1990, vol. 6, no. 2, pp. 317–333. https://doi.org/10.1193/1.1585573.
4. Megget L.M. Analysis and design of a base-isolated reinforced concrete frame building. N. Z. Soc. Earthquake Eng., 1978, vol. 11, no. 4, pp. 245–254. https://doi.org/10.5459/bnzsee.11.4.245-254.
5. Mokha A., Constantinou M., Reinhorn A. Teflon bearings in base isolation. I: Testing. J. Struct. Eng., 1990, vol. 116, no. 2, pp. 438–454. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(438).
6. Constantinou M.C., Mokha A., Reinhorn A. Teflon bearings in base isolation. II: Modeling. J. Struct. Eng., 1990, vol. 116, no. 2, pp. 455–474. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(455).
7. Mokha A., Constantinou M.C., Reinhorn A.M. Further results on frictional properties of Teflon bearings. J. Struct. Eng., 1991, vol. 117, no. 2, pp. 622–626. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:2(622).
8. Mokha A., Amin N., Constantinou M.C., Zayas V. Seismic isolation retrofit of large historical building. J. Struct. Eng., 1996, vol. 122, no. 3, pp. 298–308. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(298).
9. Kim H.-m., Constantinou M.C. Performance-based testing specifications for seismic isolators. Earthquake Eng. Struct. Dyn., 2023, vol. 52, no. 15, pp. 5141–5161. https://doi.org/10.1002/eqe.4006.
10. Castaldo P., Palazzo B., Della Vecchia P. Seismic reliability of base-isolated structures with friction pendulum bearings. Eng. Struct., 2015, vol. 95, pp. 80–93. https://doi.org/10.1016/j.engstruct.2015.03.053.
11. Tsopelas P., Constantinou M.C., Kim Y.S., Okamoto S. Experimental study of FPS system in bridge seismic isolation. Earthquake Eng. Struct. Dyn., 1996, vol. 25, no. 1, pp. 65–78. https://doi.org/10.1002/(SICI)1096-9845(199601)25:1%3C65::AID-EQE536%3E3.0.CO;2-A.
12. Fenz D.M., Constantinou M.C. Spherical sliding isolation bearings with adaptive behavior: Theory. Earthquake Eng. Struct. Dyn., 2008, vol. 37, no. 2, pp. 163–183. https://doi.org/10.1002/eqe.751.
13. Fenz D.M., Constantinou M.C. Spherical sliding isolation bearings with adaptive behavior: Experimental verification. Earthquake Eng. Struct. Dyn., 2008, vol. 37, no. 2, pp. 185–205. https://doi.org/10.1002/eqe.750.
14. Lee D., Constantinou M.C. Quintuple friction pendulum isolator: Behavior, modeling, and validation. Earthquake Spectra, 2016, vol. 32, no. 3, pp. 1607–1626. https://doi.org/10.1193/040615EQS053M.
15. Zheng W., Tan P., Li J., Wang H., Liu Y. Superelastic pendulum isolator with multi-stage variable curvature for seismic resilience enhancement of cold-regional bridges. Eng. Struct., 2023, vol. 284, art. 115960. https://doi.org/10.1016/j.engstruct.2023.115960.
16. Admane H.A., Murnal P. Comparative analysis of SIVC systems using simplified analytical modeling for practical design. Pract. Period. Struct. Des. Constr., 2021, vol. 26, no. 1, art. 04020051. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000536.
17. Zhang F., Deng J., Cao S., Dang X. Experimental and simulation studies of adaptive stiffness double friction pendulum bearing. Structures, 2023, vol. 57, art. 105026. https://doi.org/10.1016/j.istruc.2023.105026.
18. Shahbazi P., Taghikhany T. Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions. Smart Struct. Syst., 2017, vol. 20, no. 1, pp. 23–33. https://doi.org/10.12989/sss.2017.20.1.023.
19. Shaikhzadeh A.A., Karamoddin A. Effectiveness of sliding isolators with variable curvature in near-fault ground motions. The Struct. Des. Tall Spec. Build., 2016, vol. 25, no. 6, pp. 278–296. https://doi.org/10.1002/tal.1258.
20. Zhang C., Duan C., Sun L. Inter-storey isolation versus base isolation using friction pendulum systems. Int. J. Struct. Stab. Dyn., 2024, vol. 24, no. 2, art. 2450022. https://doi.org/10.1142/S0219455424500226.
21. Almaz´an J.L., De La Llera J.C., Inaudi J.A. Modeling aspects of structures isolated with the friction pendulum system. Earthquake Eng. Struct. Dyn., 1998, vol. 27, no. 8, pp. 845–867. https://doi.org/10.1002/(SICI)1096-9845(199808)27:8<845::AID-EQE760>3.0.CO;2-T.
22. Mosqueda G., Whittaker A.S., Fenves G.L.Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation. J. Struct. Eng., 2004, vol. 130, no. 3, pp. 433–442. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(433).
23. Wang Y.-P., Chung L.-L., Liao W.-H. Seismic response analysis of bridges isolated with friction pendulum bearings. Earthquake Eng. Struct. Dyn., 1998, vol. 27, no. 10, pp. 1069–1093. https://doi.org/10.1002/(SICI)1096-9845(199810)27:10<1069::AID-EQE770>3.0.CO;2-S.
24. Tsai C.S., Chiang T.-C., Chen B.-J. Finite element formulations and theoretical study for variable curvature friction pendulum system. Eng. Struct., 2003, vol. 25, no. 14, pp. 1719–1730. https://doi.org/10.1016/S0141-0296(03)00151-2.
25. Monti G., Petrone F. Analytical thermo-mechanics 3D model of friction pendulum bearings. Earthquake Eng. Struct. Dyn., 2016, vol. 45, no. 6, pp. 957–977. https://doi.org/10.1002/eqe.2693.
26. Asteris P.G., Nozhati S., Nikoo M., Cavaleri L., Nikoo M. Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech. Adv. Mater. Struct., 2019, vol. 26, no. 13, pp. 1146–1153. https://doi.org/10.1080/15376494.2018.1430874.
27. Mekaoui N., Saito T. A deep learning-based integration method for hybrid seismic analysis of building structures: Numerical validation. Appl. Sci., 2022, vol. 12, no. 7, art. 3266. https://doi.org/10.3390/app12073266.
28. Yavas M.S., Gao Z., Mekaoui N., Saito T. A machine learning-based hybrid seismic analysis of a lead rubber bearing isolated building specimen. Soil Dyn. Earthquake Eng., 2023, vol. 174, art. 108217. https://doi.org/10.1016/j.soildyn.2023.108217.
29. Li J., Kishiki S., Yamada S., Yamazaki S., Watanabe A., Terashima M. Energy-based prediction of the displacement of DCFP bearings. Appl. Sci., 2020, vol. 10, no. 15, art. 5259. https://doi.org/10.3390/app10155259.
30. Zhelyazov T., Debray K. Prediction of the thermo-mechanical behavior of a sliding isolator based on finite element and analytical analysis. Proc. 2020 III Int. Con. on High Technology for Sustainable Development (HiTech). Sofia, IEEE, 2020, pp. 1–6. https://doi.org/10.1109/HiTech51434.2020.9363973.
31. Lomiento G., Bonessio N., Benzoni G. Friction model for sliding bearings under seismic excitation J. Earthquake Eng., 2013, vol. 17, no. 8, pp. 1162–1191. https://doi.org/10.1080/13632469.2013.814611.
32. Kumar M., Whittaker A.S., Constantinou M.C. Characterizing friction in sliding isolation bearings. Eng. Struct. Dyn., 2015, vol. 44, no. 9, pp. 1409–1425. https://doi.org/10.1002/eqe.2524.
33. Quaglini V., Bocciarelli M., Gandelli E., Dubini P. Numerical assessment of frictional heating in sliding bearings for seismic isolation. J. Earthquake Eng., 2014, vol. 18, no. 8, pp. 1198–1216. https://doi.org/10.1080/13632469.2014.924890.
34. De Domenico D., Ricciardi G., Benzoni G. Analytical and finite element investigation on the thermo-mechanical coupled response of friction isolators under bidirectional excitation. Soil Dyn. Earthquake Eng., 2018, vol. 106, pp. 131–147. https://doi.org/10.1016/j.soildyn.2017.12.019.
35. Li J., Yang K., Xiang Y., Tan P. Experimental investigation of frictional heating in variable friction pendulum bearings using thin-film thermocouples. Tribol. Int., 2025, vol. 212, art. 110982. https://doi.org/10.1016/j.triboint.2025.110982.
Review
For citations:
Zhelyazov T. Numerical analysis of the dynamic response of a structure equipped with friction pendulum bearings. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(4):675-688. https://doi.org/10.26907/2541-7746.2025.4.675-688





























