Preview

Ученые записки Казанского университета. Серия Физико-математические науки

Расширенный поиск

Численное исследование динамической реакции конструкции с фрикционно-маятниковыми опорами

https://doi.org/10.26907/2541-7746.2025.4.675-688

Аннотация

Разработана упрощенная модель фрикционно-маятниковой опоры, применяемой при конечноэлементном расчете конструкции с сейсмоизолированным фундаментом. Упрощенная модель выступает в качестве альтернативы детализированной конечно-элементной модели опоры и описывает движение, совершаемое ползуном, представленным в виде материальной точки с тремя степенями свободы, по поверхности скольжения. Уравнения движения ползуна получены с использованием формализма Лагранжа. Проведено сравнение данной модели с известными аналитическими моделями, прогнозирующими поведение фрикционно-маятниковых опор, преимущественно однонаправленных. Динамическое поведение сейсмоизолированной конструкции и её варианта при отсутствии сейсмоизоляции изучено посредством численных экспериментов с помощью метода конечных элементов. В качестве входных данных использовались акселерограммы, записанные во время землетрясения. Анализ численных данных, характеризующих амплитуду перемещения и ускорения сейсмоизолированной конструкции, показал, что применение сейсмоизоляции значительно снижает риск повреждения конструкций.

Об авторе

Т. Желязов
Национальный институт геофизики, геодезии и географии (НИГГГ), Болгарская академия наук
Болгария

Тодор Желязов, PhD, научный сотрудник

София, Болгария

 



Список литературы

1. Kavyashree B.G., Patil S., Rao V.S. Review on vibration control in tall buildings: From the perspective of devices and applications. Int. J. Dyn. Control, 2021, vol. 9, no. 3, pp. 1316–1331. https://doi.org/10.1007/s40435-020-00728-6.

2. Naeim F., Kelly J.M. Design of Seismic Isolated Structures: From Theory to Practice. New York, NY, John Wiley & Sons, 1999. xiv, 290 p. https://doi.org/10.1002/9780470172742.

3. Zayas V.A., Low S.S., Mahin S.A. A simple pendulum technique for achieving seismic isolation. Earthquake Spectra, 1990, vol. 6, no. 2, pp. 317–333. https://doi.org/10.1193/1.1585573.

4. Megget L.M. Analysis and design of a base-isolated reinforced concrete frame building. N. Z. Soc. Earthquake Eng., 1978, vol. 11, no. 4, pp. 245–254. https://doi.org/10.5459/bnzsee.11.4.245-254.

5. Mokha A., Constantinou M., Reinhorn A. Teflon bearings in base isolation. I: Testing. J. Struct. Eng., 1990, vol. 116, no. 2, pp. 438–454. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(438).

6. Constantinou M.C., Mokha A., Reinhorn A. Teflon bearings in base isolation. II: Modeling. J. Struct. Eng., 1990, vol. 116, no. 2, pp. 455–474. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(455).

7. Mokha A., Constantinou M.C., Reinhorn A.M. Further results on frictional properties of Teflon bearings. J. Struct. Eng., 1991, vol. 117, no. 2, pp. 622–626. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:2(622).

8. Mokha A., Amin N., Constantinou M.C., Zayas V. Seismic isolation retrofit of large historical building. J. Struct. Eng., 1996, vol. 122, no. 3, pp. 298–308. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(298).

9. Kim H.-m., Constantinou M.C. Performance-based testing specifications for seismic isolators. Earthquake Eng. Struct. Dyn., 2023, vol. 52, no. 15, pp. 5141–5161. https://doi.org/10.1002/eqe.4006.

10. Castaldo P., Palazzo B., Della Vecchia P. Seismic reliability of base-isolated structures with friction pendulum bearings. Eng. Struct., 2015, vol. 95, pp. 80–93. https://doi.org/10.1016/j.engstruct.2015.03.053.

11. Tsopelas P., Constantinou M.C., Kim Y.S., Okamoto S. Experimental study of FPS system in bridge seismic isolation. Earthquake Eng. Struct. Dyn., 1996, vol. 25, no. 1, pp. 65–78. https://doi.org/10.1002/(SICI)1096-9845(199601)25:1%3C65::AID-EQE536%3E3.0.CO;2-A.

12. Fenz D.M., Constantinou M.C. Spherical sliding isolation bearings with adaptive behavior: Theory. Earthquake Eng. Struct. Dyn., 2008, vol. 37, no. 2, pp. 163–183. https://doi.org/10.1002/eqe.751.

13. Fenz D.M., Constantinou M.C. Spherical sliding isolation bearings with adaptive behavior: Experimental verification. Earthquake Eng. Struct. Dyn., 2008, vol. 37, no. 2, pp. 185–205. https://doi.org/10.1002/eqe.750.

14. Lee D., Constantinou M.C. Quintuple friction pendulum isolator: Behavior, modeling, and validation. Earthquake Spectra, 2016, vol. 32, no. 3, pp. 1607–1626. https://doi.org/10.1193/040615EQS053M.

15. Zheng W., Tan P., Li J., Wang H., Liu Y. Superelastic pendulum isolator with multi-stage variable curvature for seismic resilience enhancement of cold-regional bridges. Eng. Struct., 2023, vol. 284, art. 115960. https://doi.org/10.1016/j.engstruct.2023.115960.

16. Admane H.A., Murnal P. Comparative analysis of SIVC systems using simplified analytical modeling for practical design. Pract. Period. Struct. Des. Constr., 2021, vol. 26, no. 1, art. 04020051. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000536.

17. Zhang F., Deng J., Cao S., Dang X. Experimental and simulation studies of adaptive stiffness double friction pendulum bearing. Structures, 2023, vol. 57, art. 105026. https://doi.org/10.1016/j.istruc.2023.105026.

18. Shahbazi P., Taghikhany T. Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions. Smart Struct. Syst., 2017, vol. 20, no. 1, pp. 23–33. https://doi.org/10.12989/sss.2017.20.1.023.

19. Shaikhzadeh A.A., Karamoddin A. Effectiveness of sliding isolators with variable curvature in near-fault ground motions. The Struct. Des. Tall Spec. Build., 2016, vol. 25, no. 6, pp. 278–296. https://doi.org/10.1002/tal.1258.

20. Zhang C., Duan C., Sun L. Inter-storey isolation versus base isolation using friction pendulum systems. Int. J. Struct. Stab. Dyn., 2024, vol. 24, no. 2, art. 2450022. https://doi.org/10.1142/S0219455424500226.

21. Almaz´an J.L., De La Llera J.C., Inaudi J.A. Modeling aspects of structures isolated with the friction pendulum system. Earthquake Eng. Struct. Dyn., 1998, vol. 27, no. 8, pp. 845–867. https://doi.org/10.1002/(SICI)1096-9845(199808)27:8<845::AID-EQE760>3.0.CO;2-T.

22. Mosqueda G., Whittaker A.S., Fenves G.L.Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation. J. Struct. Eng., 2004, vol. 130, no. 3, pp. 433–442. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(433).

23. Wang Y.-P., Chung L.-L., Liao W.-H. Seismic response analysis of bridges isolated with friction pendulum bearings. Earthquake Eng. Struct. Dyn., 1998, vol. 27, no. 10, pp. 1069–1093. https://doi.org/10.1002/(SICI)1096-9845(199810)27:10<1069::AID-EQE770>3.0.CO;2-S.

24. Tsai C.S., Chiang T.-C., Chen B.-J. Finite element formulations and theoretical study for variable curvature friction pendulum system. Eng. Struct., 2003, vol. 25, no. 14, pp. 1719–1730. https://doi.org/10.1016/S0141-0296(03)00151-2.

25. Monti G., Petrone F. Analytical thermo-mechanics 3D model of friction pendulum bearings. Earthquake Eng. Struct. Dyn., 2016, vol. 45, no. 6, pp. 957–977. https://doi.org/10.1002/eqe.2693.

26. Asteris P.G., Nozhati S., Nikoo M., Cavaleri L., Nikoo M. Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech. Adv. Mater. Struct., 2019, vol. 26, no. 13, pp. 1146–1153. https://doi.org/10.1080/15376494.2018.1430874.

27. Mekaoui N., Saito T. A deep learning-based integration method for hybrid seismic analysis of building structures: Numerical validation. Appl. Sci., 2022, vol. 12, no. 7, art. 3266. https://doi.org/10.3390/app12073266.

28. Yavas M.S., Gao Z., Mekaoui N., Saito T. A machine learning-based hybrid seismic analysis of a lead rubber bearing isolated building specimen. Soil Dyn. Earthquake Eng., 2023, vol. 174, art. 108217. https://doi.org/10.1016/j.soildyn.2023.108217.

29. Li J., Kishiki S., Yamada S., Yamazaki S., Watanabe A., Terashima M. Energy-based prediction of the displacement of DCFP bearings. Appl. Sci., 2020, vol. 10, no. 15, art. 5259. https://doi.org/10.3390/app10155259.

30. Zhelyazov T., Debray K. Prediction of the thermo-mechanical behavior of a sliding isolator based on finite element and analytical analysis. Proc. 2020 III Int. Con. on High Technology for Sustainable Development (HiTech). Sofia, IEEE, 2020, pp. 1–6. https://doi.org/10.1109/HiTech51434.2020.9363973.

31. Lomiento G., Bonessio N., Benzoni G. Friction model for sliding bearings under seismic excitation J. Earthquake Eng., 2013, vol. 17, no. 8, pp. 1162–1191. https://doi.org/10.1080/13632469.2013.814611.

32. Kumar M., Whittaker A.S., Constantinou M.C. Characterizing friction in sliding isolation bearings. Eng. Struct. Dyn., 2015, vol. 44, no. 9, pp. 1409–1425. https://doi.org/10.1002/eqe.2524.

33. Quaglini V., Bocciarelli M., Gandelli E., Dubini P. Numerical assessment of frictional heating in sliding bearings for seismic isolation. J. Earthquake Eng., 2014, vol. 18, no. 8, pp. 1198–1216. https://doi.org/10.1080/13632469.2014.924890.

34. De Domenico D., Ricciardi G., Benzoni G. Analytical and finite element investigation on the thermo-mechanical coupled response of friction isolators under bidirectional excitation. Soil Dyn. Earthquake Eng., 2018, vol. 106, pp. 131–147. https://doi.org/10.1016/j.soildyn.2017.12.019.

35. Li J., Yang K., Xiang Y., Tan P. Experimental investigation of frictional heating in variable friction pendulum bearings using thin-film thermocouples. Tribol. Int., 2025, vol. 212, art. 110982. https://doi.org/10.1016/j.triboint.2025.110982.


Рецензия

Для цитирования:


Желязов Т. Численное исследование динамической реакции конструкции с фрикционно-маятниковыми опорами. Ученые записки Казанского университета. Серия Физико-математические науки. 2025;167(4):675-688. https://doi.org/10.26907/2541-7746.2025.4.675-688

For citation:


Zhelyazov T. Numerical analysis of the dynamic response of a structure equipped with friction pendulum bearings. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(4):675-688. https://doi.org/10.26907/2541-7746.2025.4.675-688

Просмотров: 47


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)