Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Accounting for vertical well imperfection in a two-dimensional reservoir model

https://doi.org/10.26907/2541-7746.2025.4.655-674

Abstract

In this study, a methodology is proposed to account for vertical well imperfection, depending on the degree of reservoir penetration, in a two-dimensional vertically averaged numerical flow model of a heterogeneous reservoir. Verification modeling is performed on a rectangular finite-volume grid using the open-source MATLAB Reservoir Simulation Toolbox (MRST). In the averaged two-dimensional model, wells are represented as point sources with productivity indices calculated from the wellbore radius. Accounting for well imperfection is reduced to determining the effective wellbore radius by established analytical methods and local numerical upscaling of the wellbore radius in the nearwellbore region, which appears as a relatively simple tool for constructing a two-dimensional reservoir model. Based on a comparison of the two- and three-dimensional numerical solutions for the problem of well interference, a significant superiority of local numerical upscaling over analytical models is demonstrated.

About the Authors

I. V. Eremin
Kazan Federal University
Russian Federation

Ilya V. Eremin, Master’s Student, Junior Researcher



D. R. Salimyanova
Kazan Federal University; National Research Centre “Kurchatov Institute”
Russian Federation

Dilara R. Salimyanova, Postgraduate Student, Assistant; National Research Centre “Kurchatov Institute”



K. A. Potashev
Kazan Federal University
Russian Federation

Konstantin A. Potashev, Dr. Sci. (Physics and Mathematics), Associate Professor, Head of Department of Aerohydromechanics



References

1. Monteiro L., Baptista-Pereira C., Azevedo L. Sensitivity analysis of injection parameters in steam assisted gravity drainage under geological uncertainty. J. Pet. Sci. Eng., 2022, pt. E, vol. 208, art. 109732. https://doi.org/10.1016/j.petrol.2021.109732.

2. Chen H., Sen D. A flow feature clustering-assisted uncertainty analysis workflow for optimal well rates in waterflood projects. SPE J., 2022, vol. 27, no. 4, pp. 2453–2469. https://doi.org/10.2118/209608-pa.

3. Afanasyev A., Sypchenko I., Andreeva A., Grechko S., Dymochkina M., Pavlov V., Maksakov K., Tsvetkova Yu., Vedeneeva E., Chernova A., Penigin A. Uncertainty quantification for the CO2 storage efficiency in heterogeneous saline aquifers: The impact of variability in the lithology distribution. Int. J. Greenhouse Gas Control, 2025, vol. 144, art. 104384. https://doi.org/10.1016/j.ijggc.2025.104384.

4. Fatemi S.A., Jansen J.D., Rossen W.R. Discerning in-situ performance of an EOR agent in the midst of geological uncertainty I: Layer cake reservoir model. J. Pet. Sci. Eng., 2017, vol. 158, pp. 56–65. https://doi.org/10.1016/j.petrol.2017.08.021.

5. Chengtai G., Hedong S. Material balance equation of multilayer gas reservoir. In: Well Test Analysis for Multilayered Reservoirs with Formation Crossflow. Ch. 10. Gulf Prof. Publ., 2017, pp. 247–269. https://doi.org/10.1016/B978-0-12-812853-4.00010-7.

6. Tarek A. Oil recovery mechanisms and the material balance equation. In: Reservoir Engineering Handbook. Ch. 11. Gulf Prof. Publ., 2010, pp. 733–809. https://doi.org/10.1016/B978-1-85617-803-7.50019-5.

7. HuiNong Z. Interference test and pulse test. In: Dynamic Well Testing in Petroleum Exploration and Development. Ch. 6. Elsevier, 2013, pp. 411–495. https://doi.org/10.1016/B978-0-12-397161-6.00006-1.

8. Sayarpour M., Zuluaga E., Kabir C.S., Lake L.W. The use of capacitance–resistance models for rapid estimation of waterflood performance and optimization. J. Pet. Sci. Eng., 2009, vol. 69, nos. 3–4, pp. 227–238. https://doi.org/10.1016/j.petrol.2009.09.006.

9. Alghamdi A., Hiba M., Aly M., Awotunde. A. Critical review of capacitance-resistance models. Proc. SPE Russ. Petroleum Technology Conf., 2021, art. SPE-206555-MS. https://doi.org/10.2118/206555-MS.

10. usein N., Drobot A., Vasechkin D., Urvantsev S., Bydzan A., Bolshakov V. Using hybrid digital models to analyse well interference and optimise field development management. Proc. SPE Annu. Caspian Technical Conf. Nur-Sultan, 2022, art. SPE-212120-MS. https://doi.org/10.2118/212120-MS.

11. Choubineh A., Chen J., Coenen F., Ma F., Wood D.A. Machine learning to improve natural gas reservoir simulations. In: Wood D.A., Cai A. (Eds.) Sustainable Natural Gas Reservoir and Production Engineering. Ch. 3. Ser.: The Fundamentals and Sustainable Advances in Natural Gas Science and Engineering. Vol. 1. Gulf Prof. Publ., 2021, pp. 55–82. https://doi.org/10.1016/B978-0-12-824495-1.00011-5.

12. Bascialla G., Rat C., Sheth S., Dias D., Mohammad R.H. Physics-informed machine learning application to complex compositional model in a giant field. Proc. Int. Petroleum Technology Conf. Dhahran, 2024, art. IPTC-23730-MS. https://doi.org/10.2523/IPTC-23730-MS.

13. McLean K., Zarrouk S.J. Pressure transient analysis of geothermal wells: A framework for numerical modelling. Renewable Energy, 2017, vol. 101, pp. 737–746. https://doi.org/10.1016/j.renene.2016.09.031.

14. Zarrouk S.J., McLean K. Numerical pressure-transient analysis modelling framework. Geothermal Well Test Analysis: Fundamentals, Applications and Advanced Techniques. Ch. 8. Acad. Press, 2019, pp. 193–215. https://doi.org/10.1016/B978-0-12-814946-1.00008-6.

15. Charnyi I.A. Podzemnaya gidrogazodinamika [Underground Fluid Dynamics]. Moscow, GNTINGTL, 1963. 397 p. (In Russian)

16. Pykhachev G.B., Isaev R.G. Podzemnaya gidravlika [Underground Hydraulics]. Moscow, Nedra, 1973. 360 p. (In Russian)

17. Basniev K.S., Kochina I.N., Maksimov V.M. Podzemnaya gidromekhanika [Underground Hydromechanics]. Moscow, Nedra, 1993. 416 p. (In Russian)

18. Deutsch C.V. Geostaticheskoe modelirovanie kollektorov [Geostatistical Reservoir Modeling]. Moscow, Izhevsk, IKI, 2011. 400 p. (In Russian)

19. Baikov V.A., Bakirov N.K., Yakovlev A.A. Matematicheskaya geologiya [Mathematical Geology]. Vol. 1: Introduction to geostatistics. Moscow, Izhevsk, IKI, 2012. 228 p. (In Russian)

20. Kotenev Yu.A., Sultanov Sh.Kh., Chibisov A.V., Chilikin V.M. Сomprehensive assessment of the geological heterogeneity of reservoir systems in the process of regulating the development of oil fields. Nanotechnol. Constr., 2024, vol. 16, no. 5, pp. 473–484. https://doi.org/10.15828/2075-8545-2024-16-5-473-484.

21. Potashev K.A., Mazo A.B. Numerical modeling of local effects on the petroleum reservoir using fixed streamtubes for typical waterflooding schemes. Georesources, 2020, vol. 22, no. 4, pp. 70–78. https://doi.org/10.18599/grs.2020.4.70-78. (In Russian)

22. Potashev K.A., Mazo A.B. Mathematical modeling of oil reservoir waterflooding using fixed streamtube at various values of ciscosity ratio. Lobachevskii J. Math., 2021, vol. 42, no. 8, pp. 2023–2029. https://doi.org/10.1134/S1995080221080254.

23. Mazo A.B., Potashev K.A., Baushin V.V., Bulygin D.V. Numerical simulation of oil reservoir polymer flooding by the model of fixed stream tube. Georesources, 2017, vol. 19, no. 1, pp. 15–20. http://doi.org/10.18599/grs.19.1.3. (In Russian)

24. Salimyanova D.R., Potashev K.A., Baushin V.V. The expediency of remote location from an injection well of water shut-off material in a high-permeability sublayer. Georesources, 2025, vol. 27, no. 1, pp. 261–266. https://doi.org/10.18599/grs.2025.1.27. (In Russian)

25. Lie K.-A. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge, Cambridge Univ. Press, 2019. 678 p.

26. Effective well radius. URL: https://drive.google.com/drive/folders/1zrJgsOWwgCT_oGrULpc4XvvbQo-6fP6k.

27. Barenblatt G.I., Entov V.M., Ryzhik V.M. Dvizhenie zhidkostei i gazov v prirodnykh plastakh [Theory of Fluid Flows Through Natural Rocks]. Moscow, Nedra, 1984. 211 p. (In Russian)

28. Mazo A.B., Potashev K.A. Absolute permeability upscaling for superelement modeling of petroleum reservoir. Math. Models Comput. Simul., 2018, vol. 10, no. 1, pp. 26–35. https://doi.org/10.1134/S207004821801009X.

29. Durlofsky L. Upscaling and gridding of fine scale geological models for flow simulation. Proc. 8th Int. Forum on Reservoir Simulation. Vol. 2024. Iles Borromees, 2005, pp. 1–59.

30. Potashev K.A., Akhunov R.R. Estimation of the heterogeneity of the reservoir fluid inflow to the cross-sectional contour of a vertical well. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, vol. 162, no. 2, pp. 180–192. https://doi.org/10.26907/2541-7746.2020.2.180-192. (In Russian)

31. Roache P. Vychislitel’naya gidrodinamika [Computational Fluid Dynamics]. Moscow, Mir, 1980. 616 p. (In Russian)

32. Peaceman D.W. Interpretation of well-block pressures in numerical reservoir simulation. Soc. Pet. Eng. J., 1978, vol. 18, no. 3, art. SPE-6893-PA. https://doi.org/10.2118/6893-PA.

33. Spirina E.A., Potashev K.A., Mazo A.B. Evaluation of the reliability of the averaging over the reservoir thickness for the model with a fixed streamtube. J. Phys.: Conf. Ser., 2019, vol. 1158, no. 4, art. 042024. https://doi.org/10.1088/1742-6596/1158/4/042024.

34. Potashev K.A., Akhunov R.R., Mazo A.B. Calculation of the flow rate between wells in the flow model of an oil reservoir using streamlines. Georesources, 2022, vol. 24, no. 1, pp. 27–35. https://doi.org/10.18599/grs.2022.1.3. (In Russian)

35. Oliver D.S. Moving averages for Gaussian simulation in two and three dimensions. Math. Geol., 1995, vol. 27, no. 8, pp. 939–960. https://doi.org/10.1007/BF02091660.


Review

For citations:


Eremin I.V., Salimyanova D.R., Potashev K.A. Accounting for vertical well imperfection in a two-dimensional reservoir model. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(4):655-674. (In Russ.) https://doi.org/10.26907/2541-7746.2025.4.655-674

Views: 82


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)