Algebraic and order properties of a block projection operator on the algebra of measurable operators
https://doi.org/10.26907/2541-7746.2025.4.641-654
Abstract
Let 𝜏 be a faithful normal semifinite trace on a von Neumann algebra ℳ. The block projection operator 𝒫̃𝑛 (𝑛 ≥ 2) on the *-algebra 𝑆(ℳ, 𝜏 ) of all 𝜏 -measurable operators is investigated. It is shown that 𝑓(𝒫̃𝑛(𝐴)) ≥ 𝒫̃𝑛(𝑓(𝐴)) for any operator monotone function 𝑓 on R+ and 𝐴 ∈ 𝑆(ℳ, 𝜏 )+. For an operator convex function 𝑓 on R+, we have 𝑓(𝒫̃𝑛(𝐴)) ≤ 𝒫̃𝑛(𝑓(𝐴)) for 𝐴 ∈ 𝑆(ℳ, 𝜏 )+. Conditions are established under which 𝒫̃𝑛(𝐴) belongs to the class 𝑆0(ℳ, 𝜏 ) of 𝜏 -compact operators, to the class 𝐹(ℳ, 𝜏 ) of elementary operators, to the classes 𝐿𝑝(ℳ, 𝜏 ) of operators 𝜏 -integrable with 𝑝-th power, or to the ℳ algebra itself. If 𝐴, 𝐵 ∈ 𝑆(ℳ, 𝜏 ) and 𝒫̃𝑛(𝐵) is a left (right) inverse for the operator 𝐴, then 𝒫̃𝑛(𝐵) is also a left (respectively, right) inverse for the operator 𝒫̃𝑛(𝐴).
About the Authors
M. F. Darwish TalebRussian Federation
Mohammed Firas Darwish Taleb, Postgraduate Student
M. A. Muratov
Russian Federation
Mustafa A. Muratov, Dr. Sci. (Physics and Mathematics), Full Professor
References
1. Chilin V.I., Krygin A.V., Sukochev F.A. Extreme points of convex fully symmetric sets of measurable operators. Integr. Equations Oper. Theory, 1992, vol. 15, no. 2, pp. 186–226. https://doi.org/10.1007/BF01204237.
2. Kaftal V., Weiss G. Compact derivations relative to semifinite von Neumann algebras. J. Funct. Anal., 1985, vol. 62, no. 2, pp. 202–220. https://doi.org/10.1016/0022-1236(85)90003-5.
3. Bikchentaev A.M. Block projection operator in normed solid spaces of measurable operators. Russ. Math., 2012, vol. 56, no. 2, pp. 75–79. https://doi.org/10.3103/S1066369X12020107.
4. Kantorovich L.V., Akilov G.P. Funktsional’nyi analiz [Functional Analysis]. St. Petersburg, Nevskii Dialekt, 2004. 816 p. (In Russian)
5. Bikchentaev A., Sukochev F. Inequalities for the block projection operators. J. Funct. Anal., 2021, vol. 280, no. 7, art. 108851. https://doi.org/10.1016/j.jfa.2020.108851.
6. Bikchentaev A.M. A block projection operator in the algebra of measurable operators. Russ. Math., 2023, vol. 67, no. 10, pp. 70–74. https://doi.org/10.3103/S1066369X23100031.
7. Gohberg I.C., Krein M.G. Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gil’bertovom prostranstve [Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space]. Moscow, Nauka, 1965. 448 p. (In Russian)
8. Bikchentaev A.M. Inequalities for determinants and characterization of the trace. Sib. Math. J., 2020, vol. 61, no. 2, pp. 248–254. https://doi.org/10.1134/S0037446620020068.
9. Takesaki M. Theory of Operator Algebras I. Ser.: Encyclopaedia of Mathematical Sciences. Vol. 124. Berlin, Heidelberg, Springer, 2002. xix, 415 p.
10. Dodds P.G., de Pagter B., Sukochev F.A. Noncommutative Integration and Operator Theory. Ser.: Progress in Mathematics. Vol. 349. Cham, Birkh¨auser, 2023. xi, 577 p. https://doi.org/10.1007/978-3-031-49654-7.
11. Takesaki M. Theory of Operator Algebras II. Ser.: Encyclopaedia of Mathematical Sciences. Vol. 125. Berlin, Heidelberg, Springer, 2003. xxii, 518 pp. https://doi.org/10.1007/978-3-662-10451-4.
12. Bikchentaev A.M. Minimality of convergence in measure topologies on finite von Neumann algebras. Math. Notes, 2004, vol. 75, no. 3, pp. 315–321. https://doi.org/10.1023/B:MATN.0000023310.15215.c6.
13. Bikchentaev A.M. On 𝜏 -essential invertibility of 𝜏 -measurable operators. Int. J. Theor. Phys., 2019, vol. 60, no. 2, pp. 567–575. https://doi.org/10.1007/s10773-019-04111-w.
14. Bikchentaev A.M. Essentially invertible measurable operators affiliated with a semifinite von Neumann algebra and commutators. Sib. Math. J., 2022, vol. 63, no. 2, pp. 224–232. https://doi.org/10.1134/S0037446622020033.
15. Tikhonov O.E. Continuity of operator functions in topologies connected with a trace on a von Neumann algebra. Soviet Math. (Iz. VUZ), 1987, vol. 31, no. 1, pp. 110–114.
16. Hansen F. An operator inequality. Math. Ann., 1980, vol. 246, no. 3, pp. 249–250. https://doi.org/10.1007/BF01371046.
17. Hansen F., Pedersen G.K. Jensen’s inequality for operators and L¨owner’s theorem. Math. Ann., 1982, vol. 258, no. 3, pp. 229–241. https://doi.org/10.1007/BF01450679.
18. Str˘atil˘a S.V., Zsid´o L. Lectures on von Neumann Algebras. Cambridge IISc Ser. Cambridge Univ. Press, 2019. xii, 427 p. https://doi.org/10.1017/9781108654975.
19. Halmos P.R. A Hilbert Space Problem Book. Ser.: Graduate Texts in Mathematics. Vol. 19. New York, NY, Springer, 1982. xvii, 373 p. https://doi.org/10.1007/978-1-4684-9330-6.
20. Fack T., Kosaki H. Generalized 𝑠-numbers of 𝜏 -measurable operators. Pac. J. Math., 1986, vol. 123, no. 2, pp. 269–300. http://dx.doi.org/10.2140/pjm.1986.123.269.
21. Brown L.G., Kosaki H. Jensen’s inequality in semi-finite von Neumann algebras. J. Oper. Theory, 1990, vol. 23, no. 1, pp. 3–19.
22. Kosaki H. On the continuity of the map 𝜙 ↦→ |𝜙| from the predual of a 𝑊 * -algebra. J. Funct. Anal. 1984, vol. 59, no. 1, pp. 123–131. https://doi.org/10.1016/0022-1236(84)90055-7.
23. Muratov M.A., Chilin V.I. Topological algebras of measurable and locally measurable operators. J. Math. Sci., 2019, vol. 239, no. 5, pp. 654–705. https://doi.org/10.1007/s10958-019-04320-y.
Review
For citations:
Darwish Taleb M.F., Muratov M.A. Algebraic and order properties of a block projection operator on the algebra of measurable operators. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(4):641-654. (In Russ.) https://doi.org/10.26907/2541-7746.2025.4.641-654





























