Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Numerical study of the 2D Sivashinsky equation for binary alloy solidification problems

https://doi.org/10.26907/2541-7746.2025.4.607-626

Abstract

Binary alloy solidification involves the transition of a liquid mixture of two metals into a solid phase and presents several complex challenges that researchers aim to address. These problems can be categorized into issues related to thermodynamics, diffusion, and macro- and microstructural evolution during the cooling process. The Sivashinsky equation is a fourth-order nonlinear partial differential equation that arises in the mathematical modeling of binary alloy solidification problems. In this article, we apply the Fourier spectral method combined with the Euler method to numerically solve the 2D Sivashinsky equation with periodic boundary conditions. A numerical study of the Sivashinsky equation is important because its analytical solution does not exist, except for trivial solutions. The error estimation of the approximate solution is provided. Furthermore, we show, both theoretically and numerically, that the proposed method preserves the decreasing mass condition of the obtained numerical solutions. Finally, to validate the theoretical results, three examples with different initial conditions are investigated.

About the Authors

R. Abazari
University of Mohaghegh Ardabili
Islamic Republic of Iran

Reza Abazari, PhD, Assistant Professor, Department of Mathematics



K. Yildirim
Mu¸s Alparslan University
Turkey

Kenan Yildirim, PhD, Professor, Faculty of Mathematics



References

1. Caroli B., Caroli C., Roulet B. The Mullins-Sekerka instability in directional solidification of thin samples. J. Cryst. Growth, 1986, vol. 76, no. 1, pp. 31–49. https://doi.org/10.1016/0022-0248(86)90006-0.

2. Karma A., Rappel W.-J. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E, 1998, vol. 57, no. 4, pp. 4323–4349. https://doi.org/10.1103/PhysRevE.57.4323.

3. Dantzig J.A., Rappaz M. Solidification. Ser.: Materials. Engineering Sciences. Boca Raton, FL, EPFL Press, 2009. 621 p.

4. Das A., Mittemeijer E.J. Simulation of solidification structures of binary alloys. Z. Metallkd., 2002, vol. 93, no. 5, pp. 459–467. http://dx.doi.org/10.3139/146.020459.

5. Rappaz M. et al. Solute redistribution during solidification: Principles and applications. J. Mater. Sci., 2008, vol. 43, no. 15, pp. 4890–4899.

6. Liotti E., Arteta C., Zisserman A., Lui A., Lempitsky V., Grant P.S. Crystal nucleation in metallic alloys using x-ray radiography and machine learning. Sci. Adv., 2018, vol. 4, no. 4, art. eaar4004. https://doi.org/10.1126/sciadv.aar4004.

7. Sivashinsky G.I. On cellular instability in the solidification of a dilute binary alloy. Phys. D, 1983, vol. 8, nos. 1–2, pp. 243–248. https://doi.org/10.1016/0167-2789(83)90321-4.

8. Gertsberg V.L., Sivashinsky G.I. Large cells in nonlinear Rayleigh-B´enard convection. Prog. Theor. Phys., 1981, vol. 66, no. 4, pp. 1219–1229. https://doi.org/10.1143/PTP.66.1219.

9. Sharma N., Sharma S. An efficient off-step exponential spline technique to solve Kuramoto–Sivashinsky and extended Fisher–Kolmogorov equations. Int. J. Comput. Methods, 2025, vol. 22, no. 5, art. 2450078. https://doi.org/10.1142/S0219876224500786.

10. Abazari R., Yildirim K. Numerical study of Sivashinsky equation using a splitting scheme based on Crank-Nicolson method. Math. Methods Appl. Sci., 2019, vol. 42, no. 16, pp. 5509–5521. https://doi.org/10.1002/mma.5454.

11. Ilati M., Dehghan M. Error analysis of a meshless weak form method based on radial point interpolation technique for Sivashinsky equation arising in the alloy solidification problem. J. Comput. Appl. Math., 2018, vol. 327, pp. 314–324. https://doi.org/10.1016/j.cam.2017.06.022.

12. Omrani K. A second-order splitting method for a finite difference scheme for the Sivashinsky equation. Appl. Math. Lett., 2003, vol. 16, no. 3, pp. 441–445. https://doi.org/10.1016/S0893-9659(03)80070-8.

13. Omrani K., Ben Mohamed M.L. A linearized difference scheme for the Sivashinsky equation. Far East J. Appl. Math., 2005, vol. 20, no. 2, pp. 179–188.

14. Benammou S., Omrani K. A finite element method for the Sivashinsky equation. J. Comput. Appl. Math., 2002, vol. 142, no. 2, pp. 419–431. https://doi.org/10.1016/S0377-0427(01)00370-3.

15. Omrani K. Numerical methods and error analysis for the nonlinear Sivashinsky equation. Appl. Math. Comput., 2007, vol. 189, no. 1, pp. 949–962. https://doi.org/10.1016/j.amc.2006.11.169.

16. Rouis M., Omrani K. On the numerical solution of two dimensional model of an alloy solidification problem. Model. Numer. Simul. Mater. Sci., 2016, vol. 6, no. 1, pp. 1–9. http://dx.doi.org/10.4236/mnsms.2016.61001.

17. Abazari R., Rezazadeh H., Akinyemi L., Inc M. Numerical simulation of a binary alloy of 2D Cahn–Hilliard model for phase separation. Comput. Appl. Math., 2022, vol. 41, no. 8, art. 389. https://doi.org/10.1007/s40314-022-02109-5.

18. Abazari R., Yildirim K. Numerical study of the 2D Cahn–Hilliard model of phase separation with logarithmic potential. Prik. Mekh. Tekh. Fiz., 2025, no. 2 (390), pp. 73–95. https://doi.org/10.15372/PMTF202315360.

19. Rai N., Mondal S. Spectral methods to solve nonlinear problems: A review. Partial Differ. Equations Appl. Math., 2021, vol. 4, art. 100043. https://doi.org/10.1016/j.padiff.2021.100043.

20. Moumni M., Douiri S.M., Kim J.S. Fourier-spectral method for the Landau–Lifshitz–Gilbert equation in micromagnetism. Results Appl. Math., 2023, vol. 19, art. 100380. https://doi.org/10.1016/j.rinam.2023.100380.

21. Khader M.M., Tedjani A.H. Numerical simulation for the fractional-order smoking model using a spectral collocation method based on the Gegenbauer wavelet polynomials. J. Appl. Anal. Comput., 2024, vol. 14, no. 2, pp. 847–863. https://doi.org/10.11948/20230178.


Review

For citations:


Abazari R., Yildirim K. Numerical study of the 2D Sivashinsky equation for binary alloy solidification problems. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(4):607-626. https://doi.org/10.26907/2541-7746.2025.4.607-626

Views: 51


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)