Mathematical Modeling of Eigenvibrations of the Shallow Shell with an Attached Oscillator
https://doi.org/10.26907/2541-7746.2023.2.153-166
Abstract
For the problem of eigenvibrations of the shallow shell with an attached oscillator, a new symmetric variational statement in the Hilbert space was proposed. It was established that there exist a sequence of positive eigenvalues of finite multiplicity with a limit point at infinity and the corresponding complete orthonormal system of eigenvectors. The problem was approximated by the mesh scheme of the finite element method with Hermite finite elements. Theoretical error estimates for the approximate solutions were proved. The theoretical findings were verified by the results of numerical experiments.
Keywords
About the Authors
D. M. KorostelevaRussian Federation
Kazan, 420066
S. I. Solov’ev
Russian Federation
Kazan, 420008
References
1. Seregin S.V. Dinamika tonkikh tsilindricheskikh obolochek s prisoedinennoi massoi [Dynamics of Thin Cylindrical Shells with Attached Mass]. Komsomolsk-on-Amur, KnAGTU, 2016. 175 p. (In Russian)
2. Andreev L.V., Dyshko A.L., Pavlenko I.D. Dinamika plastin i obolochek s sosredotochennymi massami [Dynamics of Plates and Shells with Concentrated Masses]. Moscow, Mashinostroenie, 1988. 195 p. (In Russian)
3. Andreev L.V., Stankevich A.I., Dyshko A.L., Pavlenko I.D Dinamika tonkostennykh konstruktsii s prisoedinennymi massami [Dynamics of Thin-Walled Structures with Attached Masses]. Moscow, MAI, 2012. 214 p. (In Russian)
4. Solov’ev S.I. Nelineinye zadachi na sobstvennye znacheniya. Priblizhennye metody [Nonlinear Eigenvalue Problems. Approximate Methods]. Saarbru¨cken, LAP, 2011. 256 p. (In Russian)
5. Adams R.A. Sobolev Spaces. New York, Acad. Press, 1975. 268 p.
6. Litvinov V.G. Optimizatsiya v ellipticheskikh granichnykh zadachakh s prilozhenyami k mekhanike [Optimization in Elliptic Boundary Value Problems with Applications to Mechanics]. Moscow, Nauka, 1987. 366 p. (In Russian)
7. Mikhlin S.G. Lineinye uravneniya v chastnykh proizvodnykh [Linear Partial Differential Equations]. Moscow, Vyssh. Shk., 1977. 431 p. (In Russian)
8. Ciarlet P.G. The Finite Element Method for Elliptic Problems. Ser.: Classics in Applied Mathematics. Vol. 40. O’Malley R.E. (Ed.). Philadelphia, SIAM, 2002. 530 p.
9. Brenner S.C., Scott L.R. The Mathematical Theory of Finite Element Methods. Ser.: Texts in Applied Mathematics. Marsden J.E., Sirovich L., Antman S.S. (Eds.). New York, Springer, 2008. xviii, 400 p. URL: https://doi.org/10.1007/978-0-387-75934-0.
10. Brenner S.C., Sung L.-Y. C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput., 2005, vols. 22–23, no. 1, pp. 83– 118. URL: https://doi.org/doi: 10.1007/s10915-004-4135-7.
11. Solov’ev S.I. Approximation of variational eigenvalue problems. Differ. Equations, 2010, vol. 46, no. 7, pp. 1030–1041. URL: https://doi.org/10.1134/S0012266110070104.
Review
For citations:
Korosteleva D.M., Solov’ev S.I. Mathematical Modeling of Eigenvibrations of the Shallow Shell with an Attached Oscillator. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2023;165(2):153–166. (In Russ.) https://doi.org/10.26907/2541-7746.2023.2.153-166