Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Multiscale computational modeling of mechanical properties of polymer composite materials

https://doi.org/10.26907/2541-7746.2025.3.491-506

Abstract

This article reports the results of a multiscale modeling of polymer composite materials (PCMs). It was demonstrated that their mechanical characteristics are determined by the combined contribution of micro-, meso-, and macroscopic strain processes. A multiscale approach to building digital models that account for the structural and mechanical characteristics of the material was introduced and subsequently applied in order to develop a micro-model of a carbon yarn, a meso-model of a PCM based on triaxial woven fabric, and a macro-model of a reflector, enabling prediction of the stressstrain state across different scales. The stress-strain state of the material was evaluated, and the processes of its fracture were analyzed. The stress-strain diagrams were constructed, and the effective mechanical properties of the PCM were identified. The models obtained make it possible to perform virtual tests without resource-intensive experiments and can be employed in the design, adaptation, and optimization of PCMs for solving specific engineering tasks.

About the Author

N. V. Eremin
Reshetnev Siberian State University of Science and Technology
Russian Federation

Nikita V. Eremin, Cand. Sci. (Engineering), Head of Scientific Laboratory 

Krasnoyarsk 



References

1. Kholmogorov S.A., Levshonkova N.V. Experimental research of the failure mechanisms of sandwich specimens with facing layers from unidirectional fiber-reinforced plastic with [0◦ ] lay-up under axial compression. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2022, vol. 164, no. 4, pp. 357–370. https://doi.org/10.26907/2541-7746.2022.4.357-370. (In Russian)

2. Kalidindi S.R., Buzzy M., Boyce B.L., Dingreville R. Digital twins for materials. Comput. Mater. Sci., 2022, vol. 9, art. 818535. https://doi.org/10.3389/fmats.2022.818535.

3. Wang Y., Tao F., Zuo Y., Zhang M., Qi Q. Digital-twin-enhanced quality prediction for the composite materials. Engineering, 2023, vol. 22, pp. 22–33. https://doi.org/10.1016/j.eng.2022.08.019.

4. Eremin N.V., Moskvichev E.V. Multilevel model for calculating the strength and the service life of a metal composite pressure vessel. Russ. Metall. (Metally), 2023, vol. 2023, no. 10, pp. 1557–1564. https://doi.org/10.1134/S0036029523100075.

5. Pleskachevskii Yu.M., Shimanovskii A.O. Computer simulation of the structure and properties of composites in loaded constructions. Mech. Mach., Mech. Mater., 2016, no. 1 (34), pp. 41–50. (In Russian)

6. Lee W., Chung I., Baek K., Im S., Cho M. Multiscale modeling to characterize electromechanical behaviors of CNT/polymer nanocomposites considering the matrix damage and interfacial debonding. Mech. Adv. Mater. Struct., 2022, vol. 29, no. 16, pp. 2322–2341. https://doi.org/10.1080/15376494.2020.1861396.

7. Vashisth A., Bakis C.E. Multiscale characterization and modeling of nanosilica-reinforced filament wound carbon/epoxy composite. Mater. Perform. Charact., 2019, vol. 8, no. 1, pp. 1–21. https://doi.org/10.1520/MPC20180108.

8. Christoff B.G., Almeida J.H.S., Jr., Ribeiro M.L., Maciel M.M., Guedes R.M., Tita V. Multiscale modelling of composite laminates with voids through the direct FE2 method. Theor. Appl. Fract. Mech., 2024, vol. 131, art. 104424. https://doi.org/10.1016/j.tafmec.2024.104424.

9. Dimitrienko Yu.I., Sokolov A.P. Multiscale modeling of elastic composite materials. Mat. Model., 2012, vol. 24, no. 5, pp. 3–20. (In Russian)

10. Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V. Multiscale modeling of elastic-plastic composites with an allowance for fault probability. Math. Model. Comput. Methods, 2016, no. 10, pp. 3–23. (In Russian)

11. Chen Y.-W., Joseph R.J., Kanyuck A., Khan S., Malhan R.K., Manyar O.M., McNulty Z., Wang B., Barbiˇc J., Gupta S.K. A digital twin for automated layup of prepreg composite sheets. J. Manuf. Sci. Eng., 2022, vol. 144, no. 4, art. 041010. https://doi.org/10.1115/1.4052132.

12. Kibrete F., Trzepieci´nski T., Gebremedhen H.S., Woldemichael D.E. Artificial intelligence in predicting mechanical properties of composite materials. J. Compos. Sci., 2023, vol. 7, no. 9, art. 364. https://doi.org/10.3390/jcs7090364.

13. M´ugica J.I., Lopes C.S., Naya F., Herr´aez M., Mart´ınez V., Gonz´alez C. Multiscale modelling of thermoplastic woven fabric composites: From micromechanics to mesomechanics. Compos. Struct., 2019, vol. 228, art. 111340. https://doi.org/10.1016/j.compstruct.2019.111340.

14. Hofer U., Luger M., Traxl R., Lackner R. Multiscale modeling of the viscoelastic response of braid-reinforced polymers: Model formulation and experimental assessment considering different rheological models. Composites, Part B, 2020, vol. 182, art. 107398. https://doi.org/10.1016/j.compositesb.2019.107398.

15. Lin S., Yang L., Xu H., Jia X., Yang X., Zu L. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion. Compos. Struct., 2021, vol. 255, art. 113046. https://doi.org/10.1016/j.compstruct.2020.113046.

16. Spahn J., Andrae H., Kabel M., Mueller R., Linder C. Multiscale modeling of progressive damage in elasto-plastic composite materials. Proc. 11th World Congr. on Computational Mechanics (WCCM XI), 5th Eur. Conf. on Computational Mechanics (ECCM V), 6th Eur. Conf. on Computational Fluid Dynamics (ECFD VI). Vol. IV. Onate E., Oliver J., Huerta A. (Eds.). ˜ Barcelona, CIMNE, 2014, pp. 3426–3437.

17. Sokolov A.P., Pershin A.Yu., Kozov A.V., Kirillov N.D. Homogenization of multilevel multicomponent heterogeneous structures for determining the physical and mechanical characteristics of composites. Fiz. Mezomekh., 2018, vol. 21, no. 5, pp. 90–107. (In Russian)

18. Breuer K., Spickenheuer A., Stommel M. Statistical analysis of mechanical stressing in short fiber reinforced composites by means of statistical and representative volume elements. Fibers, 2021, vol. 9, no. 5, art. 32. https://doi.org/10.3390/fib9050032.

19. Zhao Q., Hoa S.V., Ouellette P. Triaxial woven fabric (TWF) composites with open holes (part II): Verification of the finite element models. J. Compos. Mater., 2003, vol. 37, no. 10, pp. 849–873. https://doi.org/10.1177/0021998303037010001.

20. Wang L., Zheng C., Luo H., Wei S., Wei Z. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Compos. Struct., 2015, vol. 134, pp. 475–482. https://doi.org/10.1016/j.compstruct.2015.08.107.

21. Hashin Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech., 1980, vol. 47, no. 2, pp. 329–334. https://doi.org/10.1115/1.3153664.

22. Evdokimov A.S., Ponomarev S.V., Buyanov Yu.I. Joint calculation of the stress-strain state and antenna patterns of spacecraft reflectors. Vestn. Tomsk. Gos. Univ. Mat, Mekh., 2011, no. 1 (13), pp. 74–82. (In Russian)

23. Eremin N.V., Moskvichev V.V. A probabilistic model of fracture of the composite material of a composite overwrapped pressure vessel. J. Phys.: Conf. Ser., 2020, vol. 1431, art. 012020. https://doi.org/10.1088/1742-6596/1431/1/012020.


Review

For citations:


Eremin N.V. Multiscale computational modeling of mechanical properties of polymer composite materials. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(3):491-506. (In Russ.) https://doi.org/10.26907/2541-7746.2025.3.491-506

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)