Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

State of research in the field of associative data protection

https://doi.org/10.26907/2541-7746.2025.3.413-436

Abstract

With no established analogues in the current or past global practice, associative data protection remains cautiously perceived by specialists. The time has come to provide an integrated perspective of this method and summarize its numerous and undoubted benefits over competing approaches. In order to demonstrate such benefits, this article overviews the main results of published original research on various aspects of associative data protection. Avoiding exhaustive detail, it focuses, with appropriate references to existing literature, on the principal features of associative data protection: morphology, steganographic strength, cryptographic strength, noise immunity, and volumes of transmitted and stored information. Our central finding is a promising symbiosis of steganography and cryptography. The most notable specific results include the development of a masking algorithm and strategies for associative protection of cartographic scenes and texts, the achievement of a so-called coverage completeness, the discovery of the basic theorem of unambiguous recognition, as well as the estimation of the number of keys, steganographic strength, cryptographic strength, and noise immunity of associative data protection. References are given to the database management systems (DBMSs) already employing associative data protection. The review highlights considerable opportunities for further elaboration of the theory and practice of associative data protection.

About the Authors

I. S. Vershinin
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Igor S. Vershinin, Dr. Sci. (Engineering), Associate Professor, Head of Department of Computer Systems 

Kazan 



R. F. Gibadullin
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Ruslan F. Gibadullin, Cand. Sci. (Engineering), Associate Professor, Department of Computer Systems

Kazan 



V. A. Raikhlin
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Vadim A. Raikhlin, Dr. Sci. (Physics and Mathematics), Full Professor, Department of Computer Systems

Kazan 



References

1. Anokhin P.K. Ideas and facts in the development of the theory of functional systems. Psikhol. Zh., 1984, vol. 5, no. 2, pp. 107–118. URL: https://spkurdyumov.ru/evolutionism/idei-i-fakty-v-razrabotke-teorii-funkcionalnyx-sistem.

2. Raikhlin V.A., Medvedev A.S., Motyagin V.G. Problems in the development of matrix compilers. Vychisl. Sist., 1981, no. 89, pp. 69–83. (In Russian)

3. Raikhlin V.A. Operating logical and storing arrays. Application and design. Avtom. Telemekh., 1983, no. 11, pp. 161–171. (In Russian)

4. Raikhlin V.A., Medvedev A.S., Motyagin V.G., Il’in A.V., Schwartzman M.I. On the study of the efficiency of equipping midrange universal computers with associatve matrix processors. Upr. Sist. Mash., 1985, no. 3, pp. 23–28. (In Russian)

5. Raikhlin V.A. Ob ispol’zovanii apparata dvumernogo assotsiativnogo poiska v protsesse raspoznavaniya [On the Use of a Two-Dimensional Associative Search Apparatus in the Recognition Process]. Kazan, KAI, 1991, pp. 38–54. (In Russian)

6. Raikhlin V.A. Analysis of the performance of processor matrices in binary pattern recognition. Avtometriya, 1996, no. 5, pp. 97–103. (In Russian)

7. Duda R.O., Hart P.E. Pattern Classification and Scene Analysis. New York, NY, Wiley-Intersci. Publ., 1973. xvii, 482 p.

8. Raikhlin V.A. Konstruktivnoe modelirovanie sistem [Constructive Modeling of Systems]. Kazan, Fen, 2005. 303 p. (In Russian)

9. Druzhinin V.V., Kontorov D.S. Problemy sistemologii (problemy teorii slozhnykh sistem) [Problems of Systems Science (Problems of the Theory of Complex Systems)]. Moscow, Sov. Radio, 1976. 296 p. (In Russian)

10. Thayse A., Gribomont P., Hulin G., et al. Logicheskii podkhod k iskusstvennomu intellektu: ot modal’noi logiki k logike baz dannykh [A Logic Based Approach to Artificial Intelligence: From Modal Logic to Deductive Databases]. Moscow, Mir, 1998. 494 p. (In Russian)

11. Abazina E.S., Yerunov A.A. Digital steganography: Status and development outlook. Sist. Upr., Svyazi Bezop., 2016, no. 2, pp. 182–201. (In Russian)

12. Dryuchenko M.A., Sirota A.A. Block video steganography algorithm based on universal compressing transformations. DSPA: Vopr. Primen. Tsifrovoi Obrab. Signalov, 2017, vol. 7, no. 3, pp. 78–82. (In Russian)

13. Korzhik V.I., Fedyanin I.A., Kopylova O.D. Synthesis of high-speed steganographic algorithms resistant to blind steganalysis. VZI, 2014, no. 2, pp. 51–56. (In Russian)

14. Sirota A.A., Dryuchenko M.A., Mitrofanova E.Yu. Neural network algorithms for creating digital watermarks based on heteroassociative compressive transformations. In: Kibernetika i vysokie tekhnologii XXI veka [Cybernetics and High Technology of the 21st Century], 2014, pp. 68–78. (In Russian)

15. Sheluhin O.I., Oleynikova T.V. Evaluating the effectiveness of hiding digital watermark in video sequences due to the energy difference between the discrete cosine transform coefficients. H&ES Res., 2016, no. 2, pp. 70–76. (In Russian)

16. Wang Z., Zhang X. Secure cover selection for steganography. IEEE Access, 2019, vol. 7, pp. 57857–57867. https://doi.org/10.1109/ACCESS.2019.2914226.

17. Cachin C. An information-theoretic model for steganography. Inf. Comput., 2004, vol. 192, no. 1, pp. 41–56. https://doi.org/10.1016/j.ic.2004.02.003.

18. State Standard 28147-89. Information processing systems. Cryptographic protection. Cryptographic transformation algorithm. Moscow, Gosstandart SSSR, 1989. (In Russian)

19. State Standard 34.12-2018. Information technology. Cryptographic data security. Block ciphers. Moscow, Standartinform, 2018. (In Russian) 20. Advanced Encryption Standard (AES). Ser.: Federal Information Processing Standards Publication. FIPS 197. Upd. 1. Gaithersburg, MD, Natl. Inst. Stand. Technol., 2023. vii, 38 p. https://doi.org/10.6028/NIST.FIPS.197-upd1.

20. Coutinho S.C. The Mathematics of Ciphers: Number Theory and RSA Cryptography. New York, NY, AK Peters/CRC Press, 1999. 198 p. https://doi.org/10.1201/9781439863893.

21. Ivanov M.A., Matveichikov I.V., Skitev A.A., Strel’chenko P.A. Hiding information in pseudorandom number sequences. REDS: Telekommun. Ustroistva Sist., 2016, vol. 6, no. 3, pp. 355–359. (In Russian)

22. Vil’khovskii D.E. A review of image steganalysis methods in foreign publications. Mat. Strukt. Model., 2020, no. 4 (56), pp. 75–102. (In Russian)

23. Sirota A.A., Dryuchenko M.А., Ivankov А. Steganalysis of digital images by means of shallow and deep machine learning: Existing approaches and new solutions. Proc. Voronezh State Univ. Ser.: Syst. Anal. Inf. Technol., 2021, no. 1, pp. 33–52. (In Russian)

24. Raikhlin V.A., Vershinin I.S., Gibadullin R.F., Pystogov S.V. Reliable recognition of masked binary matrices. Connection to information security in map systems. Lobachevskii J. Math., 2013, vol. 34, no. 4, pp. 319–325. https://doi.org/10.1134/S1995080213040112.

25. Raikhlin V.A., Vershinin I.S., Gibadullin R.F. The elements of associative steganography theory. Moscow Univ. Comput. Math. Cybern., 2019, vol. 43, no. 1, pp. 40–46. https://doi.org/10.3103/S0278641919010072.

26. Vershinin I.S., Gibadullin R.F., Pystogov S.V., Raikhlin V.A. Associative steganography. Durability of associative protection of information. Lobachevskii J. Math., 2020, vol. 41, no. 3, pp. 440–450. https://doi.org/10.1134/S1995080220030191.

27. Vershinin I.S., Gibadullin R.F., Pystogov S.V., Raikhlin V.A. Associative steganography of text messages. Moscow Univ. Comput. Math. Cybern., 2021, vol. 45, no. 1, pp. 1–11. https://doi.org/10.3103/S0278641921010076.

28. Raikhlin V.A., Gibadullin R.F., Vershinin I.S. Is it possible to reduce the sizes of stegomessages in associative steganography? Lobachevskii J. Math., 2022, vol. 43, no. 2, pp. 455–462. https://doi.org/10.1134/S1995080222050201.

29. Schneier B. Cryptographic design vulnerabilities. IEEE Comput., 1998, vol. 31, no. 9, pp. 29–33.

30. Shinge S.R., Patil R. An encryption algorithm based on ASCII value of data. Int. J. Comput. Sci. Inf. Technol., 2014, vol. 5, no. 6, pp. 7232–7234.

31. Ker D.A. A capacity result for batch steganography. IEEE Signal Process. Lett., 2007, vol. 14, no. 8, pp. 525–528. https://doi.org/10.1109/LSP.2006.891319.

32. Matsumoto M., Nishimura T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Computer Simul. (TOMACS), 1998, vol. 8, no. 1, pp. 3–30. https://doi.org/10.1145/272991.272995.

33. Hegadi R., Patil A.P. A statistical analysis on in-built pseudo random number generators using NIST test suite. Proc. 2020 5th Int. Conf. on Computing, Communication and Security (ICCCS). Patna, IEEE, 2020, pp. 1–6. https://doi.org/10.1109/ICCCS49678.2020.9276849.

34. Maurer U.M. A universal statistical test for random bit generators. J. Cryptol., 1992, vol. 5, no. 2, pp. 89–105. https://doi.org/10.1007/BF00193563.

35. Sadique Uz Zaman J.K.M., Ghosh R. Review on fifteen statistical tests proposed by NIST. J. Theor. Phys. Cryptogr., 2012, vol. 1, pp. 18–31.

36. Gyarmati K. On a pseudorandom property of binary sequences. Ramanujan J., 2004, vol. 8, no. 3, pp. 289–302. https://doi.org/10.1007/s11139-004-0139-z.

37. Matsumoto M., Saito M., Nishimura T., Hagita M. CryptMT stream cipher version 3. eSTREAM, ECRYPT Stream Cipher Project, Report. Vol. 28. 2007.

38. Vershinin I.S. Durability of the associative protection of distributed cartographic objects. Nelineinyi Mir, 2011, vol. 9, no. 12, pp. 822–825. (In Russian)

39. Probert T. MapInfo Professional v10.5. GeoInformatics, 2010, vol. 13, no. 6, p. 62.

40. Vershinin I.S. Refinement of the redundancy criterion for noise-resistant hiding of information in associative steganography. Inf. Bezop., 2016, vol. 19, no. 4, pp. 511–514. (In Russian)

41. Gibadullin R.F., Vershinin I.S., Raikhlin V.A. Steganographic and computational strength of associative steganography. In: Metody modelirovaniya-VII [Methods of Modeling-VII], 2019, pp. 23–38. (In Russian)

42. Raikhlin V.A., Vershinin I.S., Klassen R.K., Gibadullin R.F., Pystogov S.V. Konstruktivnoe modelirovanie protsessov sinteza [Constructive Modeling of Synthesis Processes]. Kazan, Fen, 2020. 248 p. (In Russian)

43. Vershinin I.S., Gibadullin R.F., Pystogov S.V. State Registration Certificate for Software No. 2016611421. “Security Map Cluster” program for managing associative protected cartographic databases. Russia, 2016. (In Russian)

44. Vershinin I.S., Gibadullin R.F. State Registration Certificate for Software No. 2021613638. “Stego” program for associative protection of files. Russia, 2021.

45. Shannon C.E. Communication theory of secrecy systems. Bell Syst. Tech. J., 1949, vol. 28, no. 4, pp. 656–715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x.


Review

For citations:


Vershinin I.S., Gibadullin R.F., Raikhlin V.A. State of research in the field of associative data protection. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(3):413-436. (In Russ.) https://doi.org/10.26907/2541-7746.2025.3.413-436

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)