Modeling the oxidation process of TiAl and Ti3Al intermetallic compounds due to grain-boundary diffusion of oxygen
https://doi.org/10.26907/2541-7746.2023.3.307-321
Abstract
A diffusion-kinetic model was proposed to analyze the oxidation process in a nanostructured material with explicit identification of grain boundaries. It was assumed that oxygen migrates faster along the boundaries than it does in the grain volume. The model takes into account the stages of decomposition and formation of intermetallic compounds, as well as the formation of oxides, both within the boundaries and in the grain volume. The problem was solved numerically, and the oxidation dynamics were compared for various materials with different grain properties.
About the Authors
M. V. Chepak-GizbrekhtRussian Federation
Tomsk, 634021
A. G. Knyazeva
Russian Federation
Tomsk, 634021
References
1. Swad´zba R., Marugi K., Pyclik J. STEM investigations of γ -TiAl produced by additive manufacturing after isothermal oxidation. Corros. Sci., 2020, vol. 169, art. 108617. https://doi.org/10.1016/j.corsci.2020.108617.
2. Dai J., Zhu J., Chen C., Weng F. High temperature oxidation behavior and research status of modifications on improving high temperature oxidationresistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd., 2016, vol. 685, pp. 784–798. https://doi.org/10.1016/j.jallcom.2016.06.212.
3. Kolubaev E.A., Rubtsov V.E., Chumaevsky A.V., Astafurova E.G. Micro-, meso- and macrostructural design of bulk metallic and polymetallic materials by wire-feed electron-beam additive manufacturing. Phys. Mesomech., 2022, vol. 25, no. 4, pp. 479–491. https://doi.org/doi.org/10.1134/S1029959922060017.
4. Lim H.P., Liew W.Y.H., Melvin G.J.H., Jiang Z.-T. A short review on the phase structures, oxidation kinetics, and mechanical properties of complex Ti-Al alloys. Materials, 2021, vol. 14, no. 7, art. 1677. https://doi.org/10.3390/ma14071677.
5. Fisher J.C. Calculation of diffusion penetration curves for surface and grain boundary diffusion. J. Appl. Phys., 1951, vol. 22, no. 1, pp. 74–77. https://doi.org/10.1063/1.1699825.
6. Kaur I., Gust W. Fundamentals of Grain and Interphase Boundary Diffusion. Stuttgart, Ziegler Press, 1989. 422 p.
7. Herzig C., Divinski S.V. Grain boundary diffusion in metals: Recent developments. Mater. Trans., 2003, vol. 44, no. 1, pp. 14–27. https://doi.org/10.2320/matertrans.44.14.
8. Belova I.V., Murch G.E. Diffusion in nanocrystalline materials. J. Phys. Chem. Solids, 2003, vol. 64, no. 5, pp. 873–878. https://doi.org/10.1016/S0022-3697(02)00421-3.
9. Knyazeva A., Kryukova O., Maslov A. Two-level model of the grain boundary diffusion under electron beam action. Comput. Mater. Sci., 2021, vol. 196, art. 110548. https://doi.org/10.1016/j.commatsci.2021.110548.
10. Gryaznov D., Fleig J., Maier J. Finite element simulation of diffusion into polycrystalline materials. Solid State Sci., 2008, vol. 10, no. 6, pp. 754–760. https://doi.org/10.1016/j.solidstatesciences.2008.03.030.
11. Jaseliunaite J., Galdikas A. Kinetic modeling of grain boundary diffusion: The influence of grain size and surface processes. Materials, 2020, vol. 13, no. 5, art. 1051. https://doi.org/10.3390/ma13051051.
12. D´ıaz A., Cuesta I.I., Martinez-Pa˜neda E., Alegre J.M. Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron. Int. J. Fract., 2020, vol. 223, nos. 1–2, pp. 17–35. https://doi.org/10.1007/s10704-019-00411-8.
13. Jaseliunaite J., Povilaitis M., Galdikas A. Kinetic modeling of grain boundary diffusion: Typical, bi-modal, and semi-lamellar polycrystalline coating morphologies. Coatings, 2022, vol. 12, no. 7, art. 992. https://doi.org/10.3390/coatings12070992.
14. Hamm M., Pundt A. FEM simulation supported evaluation of a hydrogen grain boundary diffusion coefficient in MgH 2 . Int. J. Hydrogen Energy, 2017, vol. 42, no. 35, pp. 22530–22537. https://doi.org/10.1016/j.ijhydene.2017.05.050.
15. Svoboda J., Stopka J., Fisher F.D. Two-dimensional simulation of reactive diffusion in binary systems. Comput. Mater. Sci., 2014, vol. 95, pp. 309–315. https://doi.org/10.1016/j.commatsci.2014.07.041.
16. Bhatia M.A., Zhang X., Azarnoush M., Lu G., Solanki K.N. Effects of oxygen on prismatic faults in α-Ti: A combined quantum mechanics/molecular mechanics study. Scripta Mater., 2015, vol. 98, pp. 32–35. https://doi.org/10.1016/j.scriptamat.2014.11.008.
17. Chen X., Huang L., Jiao Y., Wang S., An Q., Bao Y., Geng L. Mechanisms of oxidation anisotropy between α-Ti (0001) and (011¯0) crystallographic planes in titanium matrix composites. Mater. Lett., 2021, vol. 286, art. 129230. https://doi.org/10.1016/j.matlet.2020.129230.
18. Bokstein B., Rodin A., Itckovitch A., Klinger L. Segregation and phase transitions in grain boundaries. Diffus. Found., 2019, vol. 22, pp. 160–169. https://doi.org/10.4028/www.scientific.net/DF.22.160.
19. Poletaev G.M. Self-diffusion in liquid and solid alloys of the Ti-Al system: Molecular dynamics simulation. J. Exp. Theor. Phys., 2021, vol. 133, no. 4, pp. 455–460. https://doi.org/10.1134/S1063776121090041.
20. Rakitin M.S., Mirzoev A.A., Mirzaev D.A. First-principles and thermodynamic simulation of elastiс stress effect on energy of hydrogen dissolution in alpha iron. Russ. Phys. J., 2018, vol. 60, no. 12, pp. 2136–2143. https://doi.org/10.1007/s11182-018-1337-2.
21. Chepak-Gizbrekht M.V., Knyazeva A.G. Oxidation of TiAl alloy by oxygen grain boundary diffusion. Intermetallics, 2023, vol. 162, art. 107993. https://doi.org/10.1016/j.intermet.2023.107993.
22. Chepak-Gizbrekht M.V., Knyazeva A.G. Grain boundary diffusion effect on Ti 3 Al alloy oxidation. Russ. Phys. J., 2022, vol. 65, no. 7, pp. 1130–1137. https://doi.org/10.1007/s11182-022-02741-y.
23. Mishin Y., Herzig Chr. Diffusion in the Ti–Al system. Acta Mater., 2000, vol. 48, no. 3, pp. 589–623. https://doi.org/10.1016/S1359-6454(99)00400-0.
24. Das S. The Al-O-Ti (Aluminum-oxygen-titanium) system. J. Phase Equilib., 2002, vol. 23, no. 6, pp. 525–536. https://doi.org/10.1361/105497102770331271.
25. Datta P.K., Du H.L., Burnell-Gray J.S., Ricker R. Corrosion of intermetallics. In: Cramer S.D., Covino, B.S., Jr. (Eds.) ASM Handbook. Vol. 13B: Corrosion: Materials. ASM Intl., OH, Materials Park, 2005, pp. 490–512. https://doi.org/10.31399/asm.hb.v13b.9781627081832.
26. Jing Y., Lingyan K., Xinyu C., Yongshan T., Tiefan L., Tianying X. Improvement in the oxidation resistance of TiAl based alloy by cold spraying Al coating and subsequent interdiffusion treatment. Perspekt. Mater., 2011, no. S13, pp. 295–300.
27. Garip Y., Ozdemir O. Study of thermocyclic oxidation of two-phase electrosintered titanium-aluminum alloys with dopant of chromium, molybdenum, and silicon. Fiz. Met. Metalloved., 2020, vol. 121, no. 1, pp. 365–373. doi: 10.31857/S001532302004004X. (In Russian)
28. Demidov V.N., Knyazeva A.G. Multistage kinetics of the synthesis of Ti–T x Ci y composite. Nanosci. Technol. Int. J., 2019, vol. 10, no. 3, pp. 195–218. https://doi.org/10.1615/NanoSciTechnolIntJ.2019031220.
29. Cobbinah P.V., Matizamhuka W.R. Solid-state processing route, mechanical behaviour, and oxidation resistance of TiAl alloys. Adv. Mater. Sci. Eng., 2019, vol. 2019, art. 4251953. https://doi.org/10.1155/2019/4251953.
Review
For citations:
Chepak-Gizbrekht M.V., Knyazeva A.G. Modeling the oxidation process of TiAl and Ti3Al intermetallic compounds due to grain-boundary diffusion of oxygen. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2023;165(3):307-321. (In Russ.) https://doi.org/10.26907/2541-7746.2023.3.307-321