ROS-based navigation in unknown environment using the InsertBug algorithm: Issues of practical usage
https://doi.org/10.26907/2541-7746.2025.1.38-53
Abstract
BUG algorithms are effective strategies for local path planning in unknown environments. This article presents a practical implementation of the InsertBug algorithm using the Robot Operating System (ROS) and highlights its challenges. The algorithm relies on laser sensor and odometry data to construct a locally optimal path in an unknown terrain. Its evaluation was performed in the Gazebo 3D virtual environment, employing the TurtleBot 3 Burger robot. The evaluation spanned three types of environments: mazes, settings with simple convex and concave obstacles, and office spaces. The algorithm was assessed based on the robot’s overall traveled distance and accumulated turns in yaw rotations measured in radians. The findings demonstrate the effectiveness of the algorithm in diverse layouts. The implementation serves as a valuable resource to further advance autonomous navigation systems.
Keywords
About the Authors
I. A. NekerovRussian Federation
Iaroslav A. Nekerov, Undergraduate Student
R. N. Safin
Russian Federation
Ramil N. Safin, Senior Lecturer
T. G. Tsoy
Russian Federation
Tatyana G. Tsoy, PhD, Senior Lecturer
S. Sulaiman
Italy
Shifa Sulaiman, PhD, Research Associate
E. A. Martinez-Garcia
Mexico
Edgar A. Martinez-Garcia, PhD, Professor
E. A. Magid
Russian Federation
Evgeni A. Magid, PhD, Professor, Head of Intelligent Robotics Department, Kazan Federal University
References
1. Lumelsky V.J., Stepanov A.A. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. In: Cox I.J., Wilfong G.T. (Eds.) Autonomous Robot Vehicles. New York, NY, Springer, 1990, pp. 363–390. https://doi.org/10.1007/978-1-4613-8997-2_27.
2. Dwaracherla V., Thakar S., Vachhani L., Gupta A., Yadav A., Modi S. Motion planning for pointto-point navigation of spherical robot using position feedback. IEEE/ASME Trans. Mechatron., 2019, vol. 24, no. 5, pp. 2416–2426. https://doi.org/10.1109/TMECH.2019.2934789.
3. Ng J., Br¨aunl T. Performance comparison of bug navigation algorithms. J. Intell. Rob. Syst., 2007, vol. 50, no. 1, pp. 73–84. https://doi.org/10.1007/s10846-007-9157-6.
4. McGuire K.N., de Croon G.C.H.E., Tuyls K. A comparative study of bug algorithms for robot navigation. Rob. Auton. Syst., 2019, vol. 121, art. 103261. https://doi.org/10.1016/j.robot.2019.103261.
5. Mohamed E.F., El-Metwally K., Hanafy A.R. An improved Tangent Bug method integrated with artificial potential field for multi-robot path planning. Proc. 2011 Int. Symp. on Innovations in Intelligent Systems and Applications. IEEE, 2011, pp. 555–559. https://doi.org/10.1109/INISTA.2011.5946136.
6. Kamon I., Rimon E., Rivlin E. TangentBug: A range-sensor-based navigation algorithm. Int. J. Rob. Res., 1998, vol. 17, no. 9, pp. 934–953. https://doi.org/10.1177/027836499801700903.
7. Magid E., Rivlin E. CautiousBug: A competitive algorithm for sensory-based robot navigation. Proc. 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE, 2004, pp. 2757–2762. https://doi.org/10.1109/IROS.2004.1389826.
8. Sankaranarayanan A., Vidyasagar M. A new path planning algorithm for moving a point object amidst unknown obstacles in a plane. Proc. IEEE Int. Conf. on Robotics and Automation. Vol. 3. IEEE, 1990, pp. 1930–1936. https://doi.org/10.1109/ROBOT.1990.126290.
9. Lumelsky V.J., Skewis T. Incorporating range sensing in the robot navigation function. IEEE Trans. Syst., Man, Cybern., 1990, vol. 20, no. 5, pp. 1058–1069. https://doi.org/10.1109/21.59969.
10. Chiang C.H., Liu J.-S., Chou Y.-S. Comparing path length by boundary following fast matching method and Bug algorithms for path planning. In: Chien B.-C., Hong T.-P. (Eds.) Opportunities and Challenges for Next-Generation Applied Intelligence. Ser.: Studies in Computational Intelligence. Vol. 214. Berlin, Heidelberg, Springer, 2009, pp. 303–309. https://doi.org/10.1007/978-3-540-92814-0_47.
11. Kamon I., Rivlin E. Sensory-based motion planning with global proofs. IEEE Trans. Rob. Autom., 1997, vol. 13, no. 6, pp. 814–822. https://doi.org/10.1109/70.650160.
12. Laubach S.L., Burdick J.W. An autonomous sensor-based path-planner for planetary microrovers. Proc. 1999 IEEE Int. Conf. on Robotics and Automation. Vol. 1. IEEE, 1999, pp. 347–354. https://doi.org/10.1109/ROBOT.1999.770003.
13. Xu Q.-L., Tang G.-Y. Vectorization path planning for autonomous mobile agent in unknown environment. Neural Comput. Appl., 2013, vol. 23, no. 7, pp. 2129–2135. https://doi.org/10.1007/s00521-012-1163-3.
14. Sharma N., Thukral S., Aine S., Sujit P.B. A virtual bug planning technique for 2D robot path planning. Proc. 2018 Annu. Am. Control Conf. (ACC). IEEE, 2018, pp. 5062–5069. https://doi.org/10.23919/ACC.2018.8430678.
15. Eryomin A., Safin R., Tsoy T., Lavrenov R., Magid E. Optical sensors fusion approaches for map construction: A review of recent studies. J. Rob., Networking Artif. Life, 2023, vol. 10, no. 2, pp. 127–130. https://doi.org/10.57417/jrnal.10.2_127.
16. Khan F., Alakberi A., Almaamari S., Beig A.R. Navigation algorithm for autonomous mobile robots in indoor environments. Proc. 2018 Advances in Science and Engineering Technology Int. Conf. (ASET). IEEE, 2018, pp. 1–6. https://doi.org/10.1109/ICASET.2018.8376834.
17. Xu Q.L., Yu T., Bai J. The mobile robot path planning with motion constraints based on Bug algorithm. Proc. 2017 Chinese Automation Congr. (CAC). IEEE, 2017, pp. 2348–2352. https://doi.org/10.1109/CAC.2017.8243168.
18. Jahanshahi H., Jafarzadeh M., Sari N.N., Pham V.-T., Huynh V.V., Nguyen X.Q. Robot motion planning in an unknown environment with danger space. Electronics, 2019, vol. 8, no. 2, art. 201. https://doi.org/10.3390/electronics8020201.
19. Haro F., Torres M. A comparison of path planning algorithms for omni-directional robots in dynamic environments. Proc. 2006 IEEE 3rd Latin American Robotics Symp. IEEE, 2006, pp. 18–25. https://doi.org/10.1109/LARS.2006.334319.
20. Janis A., Bade A. Path planning algorithm in complex environment: A survey. Trans. Sci. Technol., 2016, vol. 3, no. 1, pp. 31–40.
21. Lentin J., Cacace J. Mastering ROS for Robotics Programming: Design, Build, and Simulate Complex Robots Using the Robot Operating System. Birmingham, Packt Publ., 2018. 580 p.
22. Marian M., Stˆıng˘a F., Georgescu M.-T., Roibu H., Popescu D., Manta F. A ROS-based control application for a robotic platform using the Gazebo 3D simulator. Proc. 2020 21st Int. Carpathian Control Conf. (ICCC). IEEE, 2020, pp. 1–5. https://doi.org/10.1109/ICCC49264.2020.9257256.
23. Takaya K., Asai T., Kroumov V., Smarandache F. Simulation environment for mobile robots testing using ROS and Gazebo. Proc. 2016 20th Int. Conf. on System Theory, Control and Computing (ICSTCC). IEEE, 2016, pp. 96–101. https://doi.org/10.1109/ICSTCC.2016.7790647.
24. Abbyasov B., Lavrenov R., Zakiev A., Yakovlev K., Svinin M., Magid E. Automatic tool for Gazebo world construction: From a grayscale image to a 3D solid model. Proc. 2020 IEEE Int. Conf. on Robotics and Automation (ICRA). IEEE, 2020, pp. 7226–7232. https://doi.org/10.1109/ICRA40945.2020.9196621.
Review
For citations:
Nekerov I.A., Safin R.N., Tsoy T.G., Sulaiman S., Martinez-Garcia E., Magid E.A. ROS-based navigation in unknown environment using the InsertBug algorithm: Issues of practical usage. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(1):38-53. https://doi.org/10.26907/2541-7746.2025.1.38-53