Численное моделирование характеристик зажигания цилиндрического тепловыделяющего образца в среде со случайными колебаниями температуры
https://doi.org/10.26907/2541-7746.2024.3.343-363
Аннотация
Рассмотрена задача тепловой устойчивости цилиндрического образца с нелинейным тепловыделением при случайном блуждании температуры окружающей среды. Исследовано поведение такой системы в зависимости от параметров задачи (интенсивности тепловыделения, дисперсии случайного блуждания). Для этого предложен численный алгоритм, основанный на усреднении множества реализаций случайного блуждания внешней температуры. Разработан численный метод решения задачи теплопроводности с источником и со случайными условиями на границе, сочетающий явные и неявные схемы для линеаризованных уравнений переноса и метод Эйлера – Маруямы. Получены распределения характеристик зажигания и моменты этих распределений, установлена их зависимость от параметров задачи.
Ключевые слова
Об авторе
И. Г. ДонскойРоссия
Донской Игорь Геннадьевич - доктор технических наук, старший научный сотрудник.
Ул. Лермонтова, д. 130, Иркутск, 664033
Список литературы
1. Mallick S., Gayen D. Thermal behaviour and thermal runaway propagation in lithiumion battery systems — a critical review // J. Energy Storage. 2023. V. 62. Art. 106894. https://doi.org/10.1016/j.est.2023.106894.
2. Fu H., Wang J., Li L., Gong J., Wang X. Numerical study of mini-channel liquid cooling for suppressing thermal runaway propagation in a lithium-ion battery pack // Appl. Therm. Eng. 2023. V. 234, Art. 121349. https://doi.org/10.1016/j.applthermaleng.2023.121349.
3. Drewry H.P.G., Seaton N.A. Continuum random walk simulations of diffusion and reaction in catalyst particles // AIChE J. 1995. V. 41, No 4. P. 880–893. https://doi.org/10.1016/j.applthermaleng.2023.121349.
4. Feres R., Yablonsky G.S., Mueller A., Baernstein A., Zheng X., Gleaves J.T. Probabilistic analysis of transport–reaction processes over catalytic particles: Theory and experimental testing // Chem. Eng. Sci. 2009. V. 64, No 3. P. 568–581. https://doi.org/10.1016/j.ces.2008.09.033.
5. Zielinski J.M., Petersen E.E. Monte Carlo simulation of diffusion and chemical reaction in catalyst pores // AIChE J. 1987. V. 33, No 12. P. 1993–1997. https://doi.org/10.1002/aic.690331208.
6. Garmory A., Richardson E.S., Mastorakos E. Micromixing effects in a reacting plume by the Stochastic Fields method // Atmos. Environ. 2006. V. 40, No 6. P. 1078–1091. https://doi.org/10.1016/j.atmosenv.2005.11.002.
7. Ghoniem A.F., Oppenheim A.K. Numerical solution for the problem of flame propagation by the random element method // AIAA J. 1984. V. 22, No 10. P. 1429–1435. https://doi.org/10.2514/3.8799.
8. Бетев А.С., Киверин А.Д., Медведев С.П., Яковенко И.С. Численное моделирование режимов турбулентного горения водорода вблизи бедного предела // Хим. физ. 2020. Т. 39, № 12. С. 17–23. https://doi.org/10.31857/S0207401X2012002X.
9. Tun´er M. Stochastic reactor models for engine simulations. Doctoral Thesis. Lund: Lund Univ., 2008. 194 p.
10. Keil F.J. Diffusion and reaction in porous networks // Catal. Today. 1999. V. 53, No 2. P. 245–258. https://doi.org/10.1016/S0920-5861(99)00119-4.
11. Zhdanov V.P., Kasemo B. Simulations of the reaction kinetics on nanometer supported catalyst particles // Surf. Sci. Rep. 2000. V. 39, Nos 2–4. P. 25–104. https://doi.org/10.1016/S0167-5729(00)00004-2.
12. Kerstein A.R., Edwards B.F. Percolation model for simulation of char oxidation and fragmentation time-histories // Chem. Eng. Sci. 1987. V. 42, No 7. P. 1629–1634. https://doi.org/10.1016/0009-2509(87)80167-7.
13. Гринчук П.С. Горение гетерогенных систем со стохастической пространственной структурой вблизи пределов распространения // ИФЖ. 2013. Т. 86, № 4. С. 819–831.
14. Xin H., Wang C., Louw E., Wang D., Mathews J.P. Atomistic simulation of coal char isothermal oxy-fuel combustion: Char reactivity and behavior // Fuel. 2016. V. 182. P. 935–943. https://doi.org/10.1016/j.fuel.2016.05.103.
15. Panga M.K.R., Ziauddin M., Balakotaiah V. Two-scale continuum model for simulation of wormholes in carbonate acidization // AIChE J. 2005. V. 51, No 12. P. 3231–3248. https://doi.org/10.1002/aic.10574.
16. Baras F., Nicolis G., Mansour M.M., Turner J.W. Stochastic theory of adiabatic explosion // J. Stat. Phys. 1983. V. 32, No 1. P. 1–23. https://doi.org/10.1007/BF01009416.
17. de Pasquale F., Mecozzi A. Theory of chemical fluctuations in thermal explosions // Phys. Rev. A. 1985. V. 31, No 4. Art. 2454. https://doi.org/10.1103/PhysRevA.31.2454.
18. Fernandez A. Theory of scaling for fluctuations in thermal explosion conditions // Ber. Bunsenges. Phys. Chem. 1987. V. 91, No 2. P. 159–163. https://doi.org/10.1002/bbpc.19870910216.
19. Frankowicz M., Nicolis G. Transient evolution towards a unique stable state: Stochastic analysis of explosive behavior in a chemical system // J. Stat. Phys. 1983. V. 3, No 3. P. 595–609 https://doi.org/10.1007/BF01018836.
20. Frankowicz M., Mansour M.M., Nicolis G. Stochastic analysis of explosive behaviour: A qualitative approach // Physica. 1984. V. 125, No 1. P. 237–246. https://doi.org/10.1016/0378-4371(84)90011-6.
21. van Kampen N.G. Intrinsic fluctuations in explosive reactions // J. Stat. Phys. 1987. V. 46, No 5. P. 933–948. https://doi.org/10.1007/BF01011150.
22. Vlad M.O., Ross J. A stochastic approach to nonequilibrium chain reactions in disordered systems: Breakdown of eikonal approximation // Int. J. Thermophys. 1997. V. 18, No 4. P. 957—975. https://doi.org/10.1007/BF02575241.
23. Gorecki J., Popielawski J. On the stochastic theory of adiabatic thermal explosion in small systems — numerical results // J. Stat. Phys. 1986. V. 44, No 5. P. 941–954. https://doi.org/10.1007/BF01011916.
24. Zheng Q., Ross J. Comparison of deterministic and stochastic kinetics for nonlinear systems // J. Chem. Phys. 1991. V. 94, No 5. P. 3644–3648. https://doi.org/10.1063/1.459735.
25. Chou D.-P., Lackner T., Yip S. Fluctuation effects in models of adiabatic explosion // J. Stat. Phys. 1992. V. 69, No 1. P. 193–215. https://doi.org/10.1007/BF01053790.
26. Nowakowski B., Lemarchand A. Thermal explosion near bifurcation: Stochastic features of ignition // Phys. A. 2002. V. 311, Nos 1–2. P. 80–96. https://doi.org/10.1016/S0378-4371(02)00824-5.
27. Lemarchand A., Nowakowski B. Fluctuation-induced and nonequilibrium-induced bifurcations in a thermochemical system // Mol. Simul. 2004. V. 30, Nos 11–12. P. 773–780. http://dx.doi.org/10.1080/0892702042000270151.
28. Буевич Ю.А., Федотов С.П. Формирование режимов гетерогенной реакции под воздействием мультипликативного шума // ИФЖ. 1987. Т. 53, № 5. С. 802–807.
29. Wei J. Irreversible thermodynamics in engineering // Ind. Eng. Chem. 1966. V. 58, No 10. P. 55–60. https://doi.org/10.1021/ie50682a010.
30. van der Broeck C., Parrondo J.M.R., Toral R., Kawai R. Nonequilibrium phase transitions induced by multiplicative noise // Phys. Rev. E. 1997. V. 55, No 4. Art. 4084. https://doi.org/10.1103/PhysRevE.55.4084.
31. Bedeaux D., Pagonabarraga I., Ortiz de Zarate J.M., Sengers J.V., Kjelstrup S. Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion // Phys. Chem. Chem. Phys. 2010. V. 12. P. 12780–12793. https://doi.org/10.1039/C0CP00289E.
32. Bochkov G.N., Orlov A.L., Kolpashchikov V.L. Fluctuation-dissipation models of mass transfer in systems with chemical reactions // Int. Commun. Heat Mass Transfer. 1985. V. 12, No 1. P. 33–43. https://doi.org/10.1016/0735-1933(85)90005-3.
33. Schmiedl T., Seifert U. Stochastic thermodynamics of chemical reaction networks // J. Chem. Phys. 2007. V. 126. Art. 044101. https://doi.org/10.1063/1.2428297.
34. Ge H., Qian H. Mathematical formalism of nonequilibrium thermodynamics for nonlinear chemical reaction systems with general rate law // J. Stat. Phys. 2017. V. 166, No 1. P. 190–209. https://doi.org/10.1007/s10955-016-1678-6.
35. Darvey I.G., Staff P.J. Stochastic approach to first-order chemical reaction kinetics // J. Chem. Phys. 1966. V. 44. P. 990–997. https://doi.org/10.1063/1.1726855.
36. van Kampen N.G. The equilibrium distribution of a chemical mixture // Phys. Lett. A. 1976. V. 59, No 5. P. 333–334. https://doi.org/10.1016/0375-9601(76)90398-4.
37. Gillespie D.T. Stochastic simulation of chemical kinetics // Annu. Rev. Phys. Chem. 2007. V. 58. P. 35–55. https://doi.org/10.1146/annurev.physchem.58.032806.104637.
38. Higham D.J. Modeling and simulating chemical reactions // SIAM Rev. 2008. V. 50, No 2. P. 347–368. https://doi.org/10.1137/060666457.
39. Sandu A. A new look at the chemical master equation // Numer. Algorithms. 2014. V. 65, No 3. P. 485–498. https://doi.org/10.1007/s11075-013-9758-z.
40. Schlogl F. Stochastic measures in nonequilibrium thermodynamics // Phys. Rep. 1980. V. 62, No 4. P. 267–380. https://doi.org/10.1016/0370-1573(80)90019-8.
41. Montefusco A., Peletier M.A., O¨ ttinger H.C. A framework of nonequilibrium statistical mechanics. II. Coarse-graining // J. Non-Equilib. Thermodyn. 2021. V. 46, No 1. P. 15–33. https://doi.org/10.1515/jnet-2020-0068.
42. Fernàndez A., Rabitz H. The scaling of nonequilibrium fluctuations in gaseous thermal explosions // Ber. Bunsenges. Phys. Chem. 1988. V. 92, No 6. P. 754–760. https://doi.org/10.1002/bbpc.198800184.
43. Baer M.R., Gartling D.K., Desjardin P.E. Probabilistic models for reactive behaviour in heterogeneous condensed phase media // Combust. Theory Modell. 2012. V. 16, No 1. P. 75–106. https://doi.org/10.1080/13647830.2011.606916.
44. Fedotov S.P. Stochastic analysis of the thermal ignition of a distributed explosive system // Phys. Lett. A. 1993. V. 176, Nos 3–4. P. 220–224. https://doi.org/10.1016/0375-9601(93)91038-7.
45. Baratti R., Tronci S., Schaum A., Alvarez J. Dynamics of nonlinear chemical process with multiplicative stochastic noise // IFAC-PapersOnLine. 2016. V. 49, No 7. P. 869–874. https://doi.org/10.1016/j.ifacol.2016.07.299.
46. Schaum A., Tronci S., Baratti R., Alvarez J. On the dynamics and robustness of the chemostat with multiplicative noise // IFAC-PapersOnLine. 2021. V. 54, No 3. P. 342–347. https://doi.org/10.1016/j.ifacol.2021.08.265.
47. Leicher J., Wirtz S., Scherer V. Evaluation of an entropy-based combustion model using stochastic reactors // Chem. Eng. Technol. 2008. V. 31, No 7. P. 964–970. https://doi.org/10.1002/ceat.200700463.
48. Rao N.J., Ramkrishna D., Borwanker J.D. Nonlinear stochastic simulation of stirred tank reactors // Chem. Eng. Sci. 1974. V. 29, No 5. P. 1193–1204. https://doi.org/10.1016/0009-2509(74)80118-1.
49. Alvarez J., Baratti R. On the closed-loop stochastic dynamics of two-state nonlinear exothermic CSTRs with PI temperature control // Comput. Chem. Eng. 2023. V. 174. Art. 108246. https://doi.org/10.1016/j.compchemeng.2023.108246.
50. Oberlack M., Arlitt R., Peters N. On stochastic Damkohler number variations in a homogeneous flow reactor // Combust. Theory Modell. 2000. V. 4, No 4. P. 495–509. https://doi.org/10.1088/1364-7830/4/4/307.
51. Bashkirtseva I. Controlling the stochastic sensitivity in thermochemical systems under incomplete information // Kybernetika. 2018. V. 54, No 1. P. 96–109. http://doi.org/10.14736/kyb-2018-1-0096.
52. Calverley E.M., Witt P.M., Sweeney J.D. Reactor runaway due to statistically driven axial activity variations in graded catalyst beds // Chem. Eng. Sci. 2012. V. 80. P. 393–401. https://doi.org/10.1016/j.ces.2012.06.047.
53. Ganzer G., Freund H. Influence of statistical activity variations in diluted catalyst beds on the thermal reactor behavior: Derivation of an a priori criterion // Chem. Eng. Sci. 2020. V. 220. Art. 115607. https://doi.org/10.1016/j.ces.2020.115607.
54. Curl R.L. Dispersed phase mixing: I. Theory and effects in simple reactors // AIChE J. 1963. V. 9, No 2. P. 175–181. https://doi.org/10.1002/aic.690090207.
55. Kerstein A.R. One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows // J. Fluid Mech. 1999. V. 392. P. 277–334. https://doi.org/10.1017/S0022112099005376.
56. Correa S.M. Turbulence-chemistry interactions in the intermediate regime of premixed combustion // Combust. Flame. 1993. V. 93, Nos 1–2. P. 41–60. https://doi.org/10.1016/0010-2180(93)90083-F.
57. Iavarone S., P´equin A., Chen Z.X., Doan N.A.K., Swaminathan N., Parente A. An a priori assessment of the Partially Stirred Reactor (PaSR) model for MILD combustion // Proc. Combust. Inst. 2021. V. 38, No 4. P. 5403–5414. https://doi.org/10.1016/j.proci.2020.06.234.
58. Медведев В.Г., Телегин В.Г., Телегин Г.Г. Статистический анализ кинетики адиабатического теплового взрыва // ФГВ. 2009. № 3. С. 44–48.
59. Tomlin A.S., Turanyi T. Investigation and improvement of reaction mechanisms using sensitivity analysis and optimization // Cleaner Combustion: Developing Detailed Chemical Kinetic Models / Ed. by F. Battin-Leclerc, J.M. Simmie, E. Blurock. Ser.: Green Energy and Technology. London: Springer, 2013. P. 411–445. https://doi.org/10.1007/978-1-4471-5307-8_16.
60. Gel A., Chaudhari K., Turton R., Nicoletti P. Application of uncertainty quantification methods for coal devolatilization kinetics in gasifier modeling // Powder Technol. 2014. V. 265. P. 66–75. https://doi.org/10.1016/j.powtec.2014.01.024.
61. Fischer M., Vignes A. An imprecise Bayesian approach to thermal runaway probability // Proc. 12th Int. Symp. on Imprecise Probability: Theories and Applications. Ser.: Proceedings of Machine Learning Research (PMLR). 2021. V. 147. P. 150–160.
62. Derevich I.V. Effect of temperature fluctuations of fluid on thermal stability of particles with exothermic chemical reaction // Int. J. Heat Mass Transfer. 2010. V. 53, Nos 25–26. P. 5920–5932. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.031.
63. Derevich I., Galdina D. Simulation of thermal explosion of catalytic granule in fluctuating temperature field // J. Appl. Math. Phys. 2013. V. 1, No 5. P. 1–7. http://dx.doi.org/10.4236/jamp.2013.15001.
64. Derevich I.V., Ermolaev V.S., Mordkovich V.Z., Solomonik I.G., Fokina A.Yu. Heat and mass transfer in Fischer–Tropsch catalytic granule with localized cobalt microparticles // Int. J. Heat Mass Transfer. 2018. V. 121. P. 1335–1349. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.077.
65. Донской И.Г., Гросс Е.И. Численный анализ стохастических закономерностей теплового зажигания в стохастической среде // Информ. и матем. техн. в науке и управл. 2024. № 1. С. 66–77. https://doi.org/10.25729/ESI.2024.33.1.006.
66. Деревич И.В., Клочков А.К. Тепловой взрыв одиночных частиц в случайном поле температуры среды // ТВТ. 2023. Т. 61, № 1. С. 108–117. https://doi.org/10.31857/S0040364423010039.
67. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987. 502 с.
68. Мержанов А.Г., Озерковская Н.И., Шкадинский К.Г. Динамика теплового взрыва в послеиндукционный период // ФГВ. 1999. Т. 35, № 6. С. 65–70.
69. Барзыкин В.В. Тепловой взрыв при линейном нагреве // ФГВ. 1973. № 1. С. 37–54.
70. Novozhilov V. Thermal explosion in oscillating ambient conditions // Sci. Rep. 2016. V. 6, No 1. Art. 29730. https://doi.org/10.1038/srep29730.
71. Fedotov S.P. Statistical model of the thermal ignition of a distributed system // Combust. Flame. 1992. V. 91, No 1. P. 65–70. https://doi.org/10.1016/0010-2180(92)90127-B.
72. Kloeden P.E., Platen E. Numerical Solution of Stochastic Differential Equations. Ser.: Stochastic Modelling and Applied Probability. Vol. 23. Berlin, Heidelberg: Springer, 1992. xxxvi, 636 p. https://doi.org/10.1007/978-3-662-12616-5.
73. Donskoy I. Thermal explosion problem with a stochastic boundary: quasi-stationary approximation and direct numerical modelling // Research Square. Preprint. 2023. https://doi.org/10.21203/rs.3.rs-3464165/v1.
74. Takeno T. Ignition criterion by thermal explosion theory // Combust. Flame. 1977. V. 29. P. 209–211. https://doi.org/10.1016/0010-2180(77)90108-0.
75. Wilke S., Schweitzer B., Khateeb S., Al-Hallaj S. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study // J. Power Sources. 2017. V. 340. P. 51–59. https://doi.org/10.1016/j.jpowsour.2016.11.018.
76. Shahid S., Agelin-Chaab M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries // Energy Convers. Manage.: X. 2022. V. 16. Art. 100310. https://doi.org/10.1016/j.ecmx.2022.100310.
77. Chen M., Sun Q., Li Y., Wu K., Liu B., Peng P., Wang Q. A thermal runaway simulation on a lithium titanate battery and the battery module // Energies. 2015. V. 8, No 1. P. 490–500. https://doi.org/10.3390/en8010490.
78. Feng X., He X., Ouyang M., Wang L., Lu L., Ren D., Santhanagopalan S. A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries // J. Electrochem. Soc. 2018. V. 165, No 16. Art. A3748. https://doi.org/10.1149/2.0311816jes.
Рецензия
Для цитирования:
Донской И.Г. Численное моделирование характеристик зажигания цилиндрического тепловыделяющего образца в среде со случайными колебаниями температуры. Ученые записки Казанского университета. Серия Физико-математические науки. 2024;166(3):343-363. https://doi.org/10.26907/2541-7746.2024.3.343-363
For citation:
Donskoy I.G. Numerical Modeling of the Ignition Characteristics of a Cylindrical Heat-Generating Sample in a Medium with Stochastic Temperature Variations. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(3):343-363. (In Russ.) https://doi.org/10.26907/2541-7746.2024.3.343-363