Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Fourier method in the space of φB - distributions

https://doi.org/10.26907/2541-7746.2023.1.68-81

Abstract

In our previous articles, we introduced and explored the notion of φB -distributions with values in the Banach space. This offers a new perspective on the theory of solvability of linear problems, which is important for solving partial differential equations, especially equations with deviating arguments. Here, we provide an overview of the theory of such distributions, propose a new approach to justify the use of the Fourier method for solving linear problems, and write out a correctly solvable problem for a system of partial differential equations with deviating arguments.

About the Authors

V. S. Mokeichev
Kazan Federal University
Russian Federation

Kazan, 420008



A. M. Sidorov
Kazan Federal University
Russian Federation

Kazan, 420008



References

1. Vladimirov V.S. Uravneniya matematicheskoi fiziki [Equations of Mathematical Physics]. 5th ed. Moscow, Nauka, 1988. 512 p. (In Russian)

2. Mikhlin S.G. Kurs matematicheskoi fiziki [A Course in Mathematical Physics]. 2nd ed. St. Petersburg, Lan’, 2002. 576 p. (In Russian)

3. Sobolev S.L. Uravneniya matematicheskoi fiziki [Equations of Mathematical Physics]. 4th ed. Moscow, Nauka, 1966. 444 p. (In Russian)

4. Schwartz L. Matematicheskie metody dlya fizicheskikh nauk [Mathematics for the Physical Sciences]. Moscow, Mir, 1965. 412 p. (In Russian)

5. Trenogin B.A. Funktsional’nyi analiz [Functional Analysis]. Moscow, Nauka, 1980. 496 p. (In Russian)

6. Mokeichev V.S., Mokeichev A.V. A new approach to the theory of linear problems for systems of partial differential equations. I. Russ. Math., 1999, vol. 43, no. 1, pp. 22–32.

7. Buchstab A.A. Teoriya chisel [Number Theory]. Moscow, Prosveshchenie, 1966. 384 p. (In Russian)

8. Mokeichev V.S. A space with elements and only them expanding into Fourier series by a given system of elements. Evraz. Nauchn. Ob”edinenie, 2016, vol. 1, no. 10. pp. 24–31. (In Russian)

9. Mokeichev V.S. Metric, Banach, Hilbert spaces of φB -distributions. Russ. Math., 2018, vol. 62, no. 5, pp. 55–60. doi: 10.3103/S1066369X18050080.

10. Mokeichev V.S., Sidorov A.M. Dynamical processes in the space of φ-distributions. In: Badriev I.B., Banderov V., Lapin S.A. (Eds.) Mesh Methods for Boundary-Value Problems and Applications: 13th International Conference, Kazan, Russia, October 20–25, 2020. Ser.: Lecture Notes in Computational Science and Engineering. Vol. 141. Cham, Springer, 2022, pp. 325–334. doi: 10.1007/978-3-030-87809-2_25.

11. Mokeichev V.S. Differentsial’nye uravneniya s otklonyayushchimisya argumentami [Differential Equations with Deviating Arguments]. Kazan, Izd. Kazan. Univ., 1985. 226 p. (In Russian)

12. Yoshida K. Funktsional’nyi analiz [Functional Analysis]. Moscow, Mir, 1967. 624 p. (In Russian)


Review

For citations:


Mokeichev V.S., Sidorov A.M. Fourier method in the space of φB - distributions. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2023;165(1):68-81. (In Russ.) https://doi.org/10.26907/2541-7746.2023.1.68-81

Views: 139


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)