Diophantine Equation Generated by the Subfield of a Circular Field
https://doi.org/10.26907/2541-7746.2024.2.147-161
Abstract
Two forms f (x, y, z) and g(x, y, z) of degree 3 were constructed, with their values being the norms of numbers in the subfields of degree 3 of the circular fields K13 and K19 , respectively. Using the decomposition law in a circular field, Diophantine equations f (x, y, z) = a and g(x, y, z) = b , where a, b ∈ Z, a 6= 0, b 6= 0 were solved. The assertions that, based on the canonical decomposition of the numbers a and b into prime factors, make it possible to determine whether the equations f (x, y, z) = a and g(x, y, z) = b have solutions were proved.
About the Authors
I. G. GalyautdinovRussian Federation
Kazan, 420008
E. E. Lavrentyeva
Russian Federation
Kazan, 420008
References
1. Ireland K., Rosen M. Klassicheskoe vvedenie v sovremennuyu teoriyu chisel [A Classical Introduction to Modern Number Theory]. Moscow, Mir, 1987. 416 p. (In Russian)
2. Pachev U.M., Kodzokov A.Kh., Ezaova A.G., Tokbaeva A.A., Guchaeva Z.Kh. On one way to solve linear equations over a Euclidean ring. Vestn. KRAUNTs. Fiz.-Mat. Nauki, 2024, vol. 46, no. 1, pp. 9–21. https://doi.org/10.26117/2079-6641-2024-46-1-9-21. (In Russian)
3. Buno A.D. From Diophantine approximations to Diophantine equations. Prepr. IPM im. M.V. Keldysha, 2016, no. 1. 20 p. https://doi.org/10.20948/prepr-2016-1. (In Russian)
4. Galyautdinov I.G., Lavrentyeva E.E. Diophantine equation generated by the maximal subfield of a circular field. Russ. Math., 2020, vol. 64, no. 7, pp. 38–47. https://doi.org/10.3103/S1066369X20070051.
5. Borevich Z.I., Shafarevich I.R. Teoriya chisel [Number Theory]. Moscow, Nauka, 1985. 504 p. (In Russian)
6. Kostrikin A.I. Vvedenie v algebru [Introduction to Algebra]. Pt. III. Moscow, Fizmatlit, 2001. 272 p. (In Russian)
7. Bourbaki N. Algebra. Mnogochleny i polya. Uporyadochennye gruppy [Algebra. Polynomials and Fields. Ordered Groups]. Moscow, Nauka, 1965. 300 p. (In Russian)
8. Alaca S., Williams K.S. Introductory Algebraic Number Theory. New York, NY, Cambridge Univ. Press, 2004. 428 p.
9. Marcus D.A. Number Fields. 2nd ed. Ser.: Universitext. Cham, Springer, 2018. xviii, 203 p. https://doi.org/10.1007/978-3-319-90233-3.
Review
For citations:
Galyautdinov I.G., Lavrentyeva E.E. Diophantine Equation Generated by the Subfield of a Circular Field. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(2):147-161. (In Russ.) https://doi.org/10.26907/2541-7746.2024.2.147-161