Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Diophantine Equation Generated by the Subfield of a Circular Field

https://doi.org/10.26907/2541-7746.2024.2.147-161

Abstract

Two forms (x, y, zand g(x, y, z) of degree 3 were constructed, with their values being the norms of numbers in the subfields of degree 3 of the circular fields K13 and K19 , respectively. Using the decomposition law in a circular field, Diophantine equations (x, y, z) = a and g(x, y, z) = b , where a, b ∈ Z, a 6= 0, b 6= 0 were solved. The assertions that, based on the canonical decomposition of the numbers and into prime factors, make it possible to determine whether the equations (x, y, z) = a and g(x, y, z) = have solutions were proved.

About the Authors

I. G. Galyautdinov
Kazan Federal University
Russian Federation

Kazan, 420008



E. E. Lavrentyeva
Kazan Federal University
Russian Federation

Kazan, 420008



References

1. Ireland K., Rosen M. Klassicheskoe vvedenie v sovremennuyu teoriyu chisel [A Classical Introduction to Modern Number Theory]. Moscow, Mir, 1987. 416 p. (In Russian)

2. Pachev U.M., Kodzokov A.Kh., Ezaova A.G., Tokbaeva A.A., Guchaeva Z.Kh. On one way to solve linear equations over a Euclidean ring. Vestn. KRAUNTs. Fiz.-Mat. Nauki, 2024, vol. 46, no. 1, pp. 9–21. https://doi.org/10.26117/2079-6641-2024-46-1-9-21. (In Russian)

3. Buno A.D. From Diophantine approximations to Diophantine equations. Prepr. IPM im. M.V. Keldysha, 2016, no. 1. 20 p. https://doi.org/10.20948/prepr-2016-1. (In Russian)

4. Galyautdinov I.G., Lavrentyeva E.E. Diophantine equation generated by the maximal subfield of a circular field. Russ. Math., 2020, vol. 64, no. 7, pp. 38–47. https://doi.org/10.3103/S1066369X20070051.

5. Borevich Z.I., Shafarevich I.R. Teoriya chisel [Number Theory]. Moscow, Nauka, 1985. 504 p. (In Russian)

6. Kostrikin A.I. Vvedenie v algebru [Introduction to Algebra]. Pt. III. Moscow, Fizmatlit, 2001. 272 p. (In Russian)

7. Bourbaki N. Algebra. Mnogochleny i polya. Uporyadochennye gruppy [Algebra. Polynomials and Fields. Ordered Groups]. Moscow, Nauka, 1965. 300 p. (In Russian)

8. Alaca S., Williams K.S. Introductory Algebraic Number Theory. New York, NY, Cambridge Univ. Press, 2004. 428 p.

9. Marcus D.A. Number Fields. 2nd ed. Ser.: Universitext. Cham, Springer, 2018. xviii, 203 p. https://doi.org/10.1007/978-3-319-90233-3.


Review

For citations:


Galyautdinov I.G., Lavrentyeva E.E. Diophantine Equation Generated by the Subfield of a Circular Field. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(2):147-161. (In Russ.) https://doi.org/10.26907/2541-7746.2024.2.147-161

Views: 153


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)