Tricomi problem and integral equations
https://doi.org/10.26907/2541-7746.2024.1.74-91
Abstract
Formulas for inverting integral equations that arise when studying the Tricomi problem for the Lavrentyev–Bitsadze equation were derived. Solvability conditions of an auxiliary overdetermined problem in the elliptic part of the mixed domain were found using the Green function method. A connection was established between the Green functions of the Dirichlet problem and problem N for the Laplace equation in the form of integral equations mutually inverting each other. Various integral equations were considered, including explicitly solvable ones, to which the Tricomi problem can be reduced. An explicit solution of the characteristic singular equation with a Cauchy kernel was obtained without involving the theory of boundary value problems for analytic functions.
References
1. Tricomi F. Sulle equazioni lineari alle derivate parziali di 2circ ordine di tipo misto. Memor. della R. Accad. Naz. dei Lincci. Ser. 5., 1923, vol. 14, fasc. 7, pp. 133–247. (In Italian)
2. Tricomi F.D. O lineinykh uravneniyakh v chastnykh proizvodnykh vtorogo poryadka smeshannogo tipa [On Second-Order Linear Partial Differential Equations of Mixed Type]. Moscow, Leningrad, Gostekhizdat, 1947. 192 p. (In Russian)
3. Frankl F. Izbrannye trudy po gazovoi dinamike [Selected Works on Gas Dynamics]. Moscow, Nauka, 1973. 772 p. (In Russian)
4. Lavrentyev M.A., Bitsadze A.V. On the problem of equations of mixed type. Dokl. Akad. Nauk SSSR, 1950, vol. 70, no. 3, pp. 373–376. (In Russian)
5. Bitsadze A.V. On the problem of equations of mixed type. Tr. MIAN SSSR, 1953, vol. 41, pp. 3–59. (In Russian)
6. Bitsadze A.V.Uravneniya smeshannogo tipa [Equations of Mixed Type]. Moscow, Izd. Akad. Nauk SSSR, 1959. 164 p. (In Russian)
7. Smirnov M.M. Uravneniya smeshannogo tipa [Equations of Mixed Type]. Moscow, Nauka, 1970. 295 p. (In Russian)
8. Marichev O.I., Kilbas A.A., Repin O.A. Kraevye zadachi dlya uravnenii v chastnykh proizvodnykh s razryvnymi koeffitsientami [Boundary Value Problems for Partial Differential Equations with Discontinuous Coefficients]. Samara, Izd. Samar. Gos. Ekon. Univ., 2008. 276 p. (In Russian)
9. Sabitov K.B. K teorii uravnenii smeshannogo tipa [On the Theory of Equations of Mixed Type]. Moscow, Fizmatlit, 2014. 304 p. (In Russian)
10. Pleshchinskaya I.E., Pleshchinskii N.B. Over-determined boundary value problems for elliptic partial differential equations and their applications to waves diffraction theory. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2005, vol. 147, no. 3, pp. 4–32. (In Russian)
11. Pleshchinskaya I.E., Pleshchinskii N.B. Over-determined boundary value problems for PDE and their application in the wave propagation theory. Appl. Anal., 2014, vol. 93, no. 11, pp. 2350–2359. doi: 10.1080/00036811.2014.930825.
12. Krikunov Yu.M. On the Tricomi problem for the Lavrentyev–Bitsadze equation. Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 2, pp. 76–81. (In Russian)
13. Krikunov Yu.M. On the Tricomi problem for a square. Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 10, pp. 81–85. (In Russian)
14. Krikunov Yu.M. Kraevye zadachi dlya model’nykh uravnenii smeshannogo tipa [Boundary Value Problems for the Model Equations of Mixed Type]. Kazan, Izd. Kazan. Univ., 1986. 148 p. (In Russian)
15. Tikhonov A.N., Samarskii A.A. Uravneniya matematicheskoi fiziki [Equations of Mathematical Physics]. Moscow, Nauka, 1977. 736 p. (In Russian)
16. Aksent’ev L.A. Metod simmetrii. Programma i uchebnye zadaniya k spetsial’nomu kursu [Symmetry Method. Program and Assignments for a Special Course]. Kazan, Izd. Kazan. Univ., 1991. 48 p. (In Russian)
17. Ford L.R. Avtomorfnye funktsii [Automorphic Functions]. Moscow, Leningrad, ONTI, 1936. 340 p. (In Russian)
18. Chibrikova L.I. On the method of D.A. Grave for solving the Dirichlet problem. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 1962, vol. 122, no. 3, pp. 73–80. (In Russian)
19. Begehr H., Vaitekhovich T. Green functions, reflections, and plane parqueting. Eurasian Math. J., 2010, vol. 1, no. 1, pp. 17–31.
20. Begehr H., Vaitekhovich T. The parqueting-reflection principle for constructing Green functions. In: Analytic Methods of Analysis and Differential Equations: AMADE 2012. Cottenham, Cambridge Sci. Publ., 2013, pp. 11–20.
21. Gakhov F.D. Kraevye zadachi [Boundary Value Problems]. Moscow, Nauka, 1977. 640 p. (In Russian)
22. Aksent’ev L.A. Construction of the Schwarz operator by the symmetry method. Tr. Semin. Obratnym Kraev. Zadacham. Izd. Kazan. Univ., 1964, no. 2, pp. 3–11. (In Russian)
23. Aksent’ev L.A. Construction of the Schwarz operator by the symmetry method. Tr. Semin. Obratnym Kraev. Zadacham. Izd. Kazan. Univ., 1966, no. 3, pp. 11–24. (In Russian)
24. Aksent’ev L.A. Construction of the Schwarz operator by the symmetry method. Tr. Semin. Obratnym Kraev. Zadacham. Izd. Kazan. Univ., 1967, no. 4, pp. 3–10. (In Russian)
25. Aksent’ev L.A. Primenenie metoda simmetrii v konformnykh otobrazheniyakh i v kraevykh zadachakh. Programma i uchebnye zadaniya k spetsial’nomu kursu [Application of the Symmetry Method to Conformal Mappings and Boundary Value Problems. Program and Assignments for a Special Course]. Kazan, Izd. Kazan. Univ., 1993. 48 p. (In Russian)
26. Chibrikova L.I. Boundary value problems of the theory of analytic functions on Riemann surfaces. In: Itogi nauki i tekhn. Ser. Matem. anal. [Achievements of Science and Technology. Series: Mathematical Analysis]. Vol. 18. Moscow, VINITI, 1980, pp. 3–66. (In Russian)
27. Mikhlin S.G. Lektsii po lineinym integral’nym uravneniyam [Lectures on Linear Integral Equations]. Moscow, Fizmatgiz, 1959. 232 p. (In Russian)
28. Maher A., Pleshchinskii N.B. On connection among values of solutions of the Tricomi problem on the sides of characteristic triangles. Acta Sci. Math. (Szeged), 2008, vol. 74, pp. 121–133.
29. Gakhov F.D., Chibrikova L.I. On some types of singular integral equations solvable in closed form. Mat. Sb., 1954, vol. 35, no. 3, pp. 395–436. (In Russian)
30. Pleshchinskii N.B. Prilozheniya teorii integral’nykh uravnenii s logarifmicheskimi i stepennymi yadrami. Ucheb.-metod. posobie [Applications of the Theory of Integral Equations with Logarithmic and Power Kernels. A Study Guide]. Kazan, Izd. Kazan. Univ., 1987. 154 p. (In Russian)
31. Chibrikova L.I. Osnovnye granichnye zadachi dlya analiticheskikh funktsii [Basic Boundary Value Problems for Analytic Functions]. Kazan, Kazan. Univ., 1977. 302 p. (In Russian)
32. Muskhelishvili N.I. Singulyarnye integral’nye uravneniya [Singular Integral Equations]. Moscow, Nauka, 1968. 511 p. (In Russian)
Review
For citations:
Pleshchinskii N.B. Tricomi problem and integral equations. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(1):74-91. (In Russ.) https://doi.org/10.26907/2541-7746.2024.1.74-91