On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas
https://doi.org/10.26907/2541-7746.2024.1.36-51
Abstract
The one-dimensional problem of the linear stability of dynamic states of local thermodynamic equilibria with respect to small perturbations was studied for the case when the Vlasov–Poisson electron gas contains electrons with a stationary distribution function that is constant in physical space and variable in a continuum of velocities. The absolute instability of all considered one-dimensional dynamic states of any local thermodynamic equilibrium was proved using the direct Lyapunov method. The scope of applicability of the Newcomb–Gardner–Rosenbluth sufficient condition for linear stability was outlined. An a priori exponential estimation was obtained for the rise of small one-dimensional perturbations from below. Analytic counterexamples to the spectral Newсomb–Gardner theorem and the Penrose criterion were constructed. Earnshaw’s theorem was extended from classical mechanics to
statistical one.
About the Authors
Yu. G. GubarevRussian Federation
630090; Novosibirsk
M. S. Kotelnikova
Russian Federation
630090; Novosibirsk
References
1. Bernstein I.B. Waves in a plasma in a magnetic field. Phys. Rev., 1958, vol. 109, no. 1, pp. 10–21. doi: 10.1103/PhysRev.109.10.
2. Gardner C.S. Bound on the energy available from a plasma. Phys. Fluids, 1963, vol. 6, no. 6, pp. 839–840. doi: 10.1063/1.1706823.
3. Rosenbluth M.N. Topics in microinstabilities. In: Rosenbluth M.N. (Ed.) Advanced Plasma Theory. Ser: Proceedings of the International School of Physics “Enrico Fermi”, Course 25. New York, NY, Acad. Press, 1964, pp. 137–158.
4. Holm D.D., Marsden J.E., Ratiu T.S., Weinstein A. Nonlinear stability of fluid and plasma equilibria. Phys. Rep., 1985, vol. 123, nos. 1–2, pp. 1–116.
5. Pankavich S., Allen R. Instability conditions for some periodic BGK waves in the Vlasov–Poisson system. Eur. Phys. J. D., 2014, vol. 68, no. 12, art. 363. doi: 10.1140/epjd/e2014-50170-y.
6. Han-Kwan D., Hauray M. Stability issues in the quasineutral limit of the one-dimensional Vlasov–Poisson equation. Commun. Math. Phys., 2015, vol. 334, no. 2, pp. 1101–1152. doi: 10.1007/s00220-014-2217-4.
7. Esenturk E., Hwang H.-J. Linear stability of the Vlasov–Poisson system with boundary conditions. Nonlinear Anal., 2016, vol. 139, pp. 75–105. doi: 10.1016/j.na.2016.02.014.
8. Landau L.D. On the vibrations of the electronic plasma. Usp. Fiz. Nauk, 1967, vol. 93, no. 3, pp. 527–540. (In Russian)
9. Mouhot C., Villani C. On Landau damping. Acta Math., 2011, vol. 207, no. 1, pp. 29–201. doi: 10.1007/s11511-011-0068-9.
10. Bedrossian J., Masmoudi N., Mouhot C. Linearized wave-damping structure of Vlasov–Poisson in BbbR 3 . SIAM J. Math. Anal., 2022, vol. 54, no. 4, pp. 4379–4406. doi: 10.1137/20M1386141.
11. Bibilova S.A., Gubarev Y.G. Two-flow instability of one class of spherically symmetric dynamic equilibrium states of Vlasov–Poisson plasma. Acta Appl. Math., 2023, vol. 187, no. 1, art. 2. doi: 10.1007/s10440-023-00595-1.
12. Gubarev Yu.G. Two-flow instability of particular class of one-dimensional dynamic equilibrium states of Vlasov–Poisson plasma. Plasma Res. Express, 2019, vol. 1, no. 4, art. 045008. doi: 10.1088/2516-1067/ab5ac0.
13. Zakharov V.E., Kuznetsov E.A. Hamiltonian formalism for nonlinear waves. Phys.-Usp., 1997, vol. 40, no. 11, pp. 1087–1116. doi: 10.1070/PU1997v040n11ABEH000304.
14. Zakharov V.E., Kuznetsov E.A. Gamil’tonovskii formalizm dlya sistem gidrodinamicheskogo tipa [Hamiltonian Formalism for Systems of Hydrodynamic Type]. Novosibirsk, Inst. Avtom. Elektrom., 1982. 50 p. Preprint, Inst. Avtom. Elektrom. Sib. Otd. Akad. Nauk SSSR, no. 186. (In Russian)
15. Godunov S.K. Uravneniya matematicheskoi fiziki [Equations of Mathematical Physics]. Moscow, Nauka, 1979. 392 p. (In Russian)
16. Krall N.A., Trivelpiece A.W. Osnovy fiziki plazmy [Principles of Plasma Physics]. Moscow, Mir, 1975. 528 p. (In Russian)
17. Penrose O. Electrostatic instabilities of a uniform non-Maxwellian plasma. Phys. Fluids, 1960, vol. 3, no. 2, pp. 258–264. doi: 10.1063/1.1706024.
18. Zakharov V.E. Benney equations and quasiclassical approximation in the method of the inverse problem. Funct. Anal. Appl., 1980, vol. 14, no. 2, pp. 89–98. doi: 10.1007/BF01086549.
19. Gubarev Yu.G. To analogy between the Benny and Vlasov–Poisson equations. In: Din. Sploshnoi Sredy: Sb. nauch. tr. RAN, In-t gidrodinamiki [Dynamics of a Continuous Medium: A Collection of Articles by the Institute of Hydrodynamics, Russian Academy of Sciences, Siberain Branch], 1995, no. 110: Acoustics of heterogeneous media, pp. 78–90. (In Russian)
20. Yakubovich V.A., Starzhinskii V.M. Lineinye differentsial’nye uravneniya s preiodicheskimi koeffitsientami i ikh prilozheniya [Linear Differential Equations with Periodic Coefficients and Their Applications]. Moscow, Nauka, 1972. 718 p. (In Russian)
21. Chandrasekhar S. Ellipsoidnye figury ravnovesiya [Ellipsoidal Figures of Equilibrium]. Moscow, Mir, 1973. 288 p. (In Russian)
22. Chaplygin S.A. Novyi metod priblizhennogo integrirovaniya differentsial’nykh uravnenii [A New Method for Approximate Integration of Differential Equations]. Moscow, GITTL, 1950. 103 p. (In Russian)
23. Gubarev Yu.G. Pryamoi metod Lyapunova. Ustoichivost’ sostoyanii pokoya i statsionarnykh techenii zhidkostei i gazov [The Direct Lyapunov Method. The Stability of Quiescent States and Steady-State Flows of Fluids and Gases]. Saarbr¨ucken, Palmarium Acad. Publ., 2012. 192 p. (In Russian)
24. Sirazetdinov T.K. Ustoichivost’ sistem s raspredelennymi parametrami [Optimization of Systems with Distributed Parameters]. Novosibirsk, Nauka, 1987. 229 p. (In Russian)
Review
For citations:
Gubarev Yu.G., Kotelnikova M.S. On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(1):36-51. (In Russ.) https://doi.org/10.26907/2541-7746.2024.1.36-51