Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

A Conservative Finite Element Scheme for the Kirchhoff Equation

https://doi.org/10.26907/2541-7746.2023.2.115-131

Abstract

This article presents an implicit two-layer finite element scheme for solving the Kirchhoff equation, a nonlinear nonlocal equation of hyperbolic type with the Dirichlet integral. The discrete scheme was designed considering the solution of the problem and its derivative for the time variable. It ensures total energy conservation at a discrete level. The use of the Newton method was proven to be effective for solving the scheme on the time layer despite the nonlocality of the equation. The test problems with smooth solutions showed that the scheme can define both the solution of the problem and its time derivative with an error of O(h2+τ2) in the root-mean-square norm, where τ and h are the grid steps in time and space, respectively.

About the Authors

R. Z. Dautov
Kazan Federal University
Russian Federation

Kazan, 420008 



M. V. Ivanova
Kazan Federal University
Russian Federation

Kazan, 420008 



References

1. Kirchhoff G. Vorlesungen u¨ber mathematische Physik. Bd. 1: Mechanik. Leipzig, B.G. Teubner, 1876. 466 S. (In German)

2. Bernstein S.N. Nouvelles applications des grandeurs al´eatoires presqu’ind´ependantes. Izv. Akad. Nauk SSSR. Ser. Mat., 1940, vol. 4, no. 2, pp. 137–150. (In Russian and French)

3. Poho˘zaev S.I. On a class of quasilinear hyperbolic equations. Math. USSR-Sb., 1975, vol. 25, no. 1, pp. 145–158. URL: https://doi.org/10.1070/SM1975v025n01ABEH002203.

4. Pokhozhaev S.I. The Kirchhoff quasilinear hyperbolic equation. Differ. Equations, 1985, vol. 21, no. 1, pp. 82–87.

5. Lions J.L. On some questions in boundary value problems of mathematical physics. Ser.: North-Holland Mathematics Studies. Vol. 30: Contemporary developments in continuum mechanics and partial differential equations. De La Penha G.M., Medeiros L.A.J. (Eds.). Amsterdam, North-Holland Publ. Co., 1978, pp. 284–346. URL: https://doi.org/10.1016/S0304-0208(08)70870-3.

6. Arosio A., Panizzi S. On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc., 1996, vol. 348, no. 1, pp. 305–330.

7. Arosio A. Averaged evolution equations. The Kirchhoff string and its treatment in scales of Banach spaces. Proc. 2nd Workshop on Functional-Analytic Methods in Complex Analysis and Applications to Partial Differential Equations. ICTP, Trieste, Jan. 25–29, 1993. Tutschke W., Mshimba A. (Eds.). River Edge, NJ, World Sci. Publ., 1995, pp. 220– 254. URL: https://doi.org/10.1142/2927.

8. Lin X., Li F. Global existence and decay estimates for nonlinear Kirchhoff–type equation with boundary dissipation. Differ. Equations Appl., 2013, vol. 5, no. 2, pp. 297–317. URL: https://doi.org/10.7153/dea-05-18.

9. Carrier G.F. On the non-linear vibration problem of the elastic string. Q. Appl. Math., 1945, vol. 3, no. 2, pp. 157–165.

10. Cousin A.T., Frota C.L., Lar’kin N.A., Medeiros L.A. On the abstract model of the Kirchhoff–Carrier equation. Commun. Appl. Anal., 1997, vol. 1, no. 3, pp. 389–404.

11. Cordeiro S.M.S., Pereira D.C., Ferreira J., Raposo C.A. Global solutions and exponential decay to a Klein–Gordon equation of Kirchhoff–Carrier type with strong damping and nonlinear logarithmic source term. Partial Differ. Equations Appl. Math., 2021, vol. 3. Art. 100018. URL: https://doi.org/10.1016/j.padiff.2020.100018.

12. Zaitsev V.V., Nikhulin A.V., Nikhulin V.V. Nonlinear resonance in a string resonator. Vestn. SamGU. Estestvennonauchn. Ser., 2005, vol. 39, no. 5, pp. 125–130. (In Russian)

13. Gudi Т. Finite element method for a nonlocal problem of Kirchhoff type. SIAM J. Numer. Anal., 2002, vol. 50, no. 2, pp. 657–668. URL: https://doi.org/10.1137/110822931.

14. Dond A.K., Pani A.K. A priori and a posteriori estimates of conforming and mixed FEM for a Kirchhoff equation of elliptic type. Comput. Methods Appl. Math., 2017, vol. 17, no. 2, pp. 217–236. URL: https://doi.org/10.1515/cmam-2016-0041.

15. Srivastava V., Chaudhary S., Kumar V.V.K.S., Srinivasan B. Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy. J. Appl. Math. Comput., 2017, vol. 53, nos. 1–2, pp. 413–443. URL: https://doi.org/10.1007/s12190-0150975-6.

16. Kundu S., Chaudhary S., Pani A., Khebchareon M. Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy. Numer. Funct. Anal. Optim., 2016, vol. 22, no. 37, pp. 719–752.

17. Chaudhary S., Srivastava V., Kumar V.V.K.S. Finite element scheme with Crank–Nicolson method for parabolic nonlocal problems involving the Dirichlet energy. Int. J. Comput. Methods, 2017, vol. 14, no. 5, art. 1750053. URL: https://doi.org/10.1142/S0219876217500530.

18. Peradze J. A numerical algorithm for the nonlinear Kirchhoff string equation. Numer. Math., 2005, vol. 102, no. 2, pp. 311–342. URL: https://doi.org/10.1007/s00211-0050642-1.

19. Bilbao S., Smith J. Energy-conserving finite difference schemes for nonlinear strings. Acta Acust. Acust., 2005, vol. 91, no. 2, pp. 299–311.

20. Shi D., Wu Y. Nonconforming quadrilateral finite element method for nonlinear Kirchhofftype equation with damping. Math. Methods Appl. Sci., 2020, vol. 43, no. 5, pp. 2558–2576. URL: https://doi.org/10.1002/mma.6065.

21. Lions J.L. Nekotorye metody resheniya nelineinykh kraevykh zadach [Some Methods of Solving Nonlinear Boundary Value Problems]. Oleinik O.A. (Ed.), Volevich L.R. (Transl.). Moscow, Mir, 1972. 587 p. (In Russian)


Review

For citations:


Dautov R.Z., Ivanova M.V. A Conservative Finite Element Scheme for the Kirchhoff Equation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2023;165(2):115–131. (In Russ.) https://doi.org/10.26907/2541-7746.2023.2.115-131

Views: 160


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)