Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

A method for constructing idempotents in a unital algebra

https://doi.org/10.26907/2541-7746.2025.2.384-396

Abstract

A method is proposed for constructing idempotents in a unital algebra 𝒜 using n arbitrary idempotents P1,...,Pn from this algebra. The properties of the resulting idempotents P = P(P1,...,Pn) are investigated; for n = 2 and n = 3, explicit forms of the idempotents are obtained: A(P1,P2) and B(P1,P2,P3), respectively. It is shown that the mappings

P2 A(P1,P2), f(P2) = A(P1,P2) and P3 B(P1,P2,P3), g(P3) = B(P1,P2,P3)

preserve the complements ⊥ and are multiplicative on wide classes of idempotent pairs. For a finite trace 𝜑 on a unital C* -algebra 𝒜, 𝜑(P(P1,...,Pn)) = 𝜑(Pn). For the projections P1,...,Pn from the von Neumann algebra 𝒜, the method yields a new projection and enables the construction of some partial isometries.

About the Author

M. Khadour
Kazan Federal University
Russian Federation

Mahmoud Khadour, Postgraduate Student

Kazan



References

1. Dixmier J. Position relative de deux vari´et´es lin´eares ferm´ees dans un espace de Hilbert. Rev. Sci., 1948, vol. 86, pp. 387–399. (In French)

2. Broise M. Commutateurs dans le groupe unitaire d’un facteur. J. Math. Pures Appl. S´er. 9, 1967, vol. 46, no. 3, pp. 299–312. (In French)

3. Fillmore P.A. On products of symmetries. Can. J. Math., 1966, vol. 18, no. 5, pp. 897–900. https://doi.org/10.4153/CJM-1966-090-5.

4. Stampfli J.G. Sums of projections. Duke Math. J., 1964, vol. 31, no. 3, pp. 455–461. https://doi.org/10.1215/S0012-7094-64-03144-8.

5. Fillmore P.A. Sums of operators with square zero. Acta Sci. Math., 1967, vol. 28, nos. 3–4, pp. 285–288.

6. Pearcy C., Topping D. Sums of small numbers of idempotents. Mich. Math. J., 1967, vol. 14, no. 4, pp. 453–465. https://doi.org/10.1307/mmj/1028999848.

7. Matsumoto K. Self-adjoint operators as a real span of 5 projections. Math. Jpn., 1984, vol. 29, no. 2, pp. 291–294.

8. Holland S.S., Jr. Projections algebraically generate the bounded operators on real or quaternionic Hilbert space. Proc. Am. Math. Soc., 1995, vol. 123, no. 11, pp. 3361–3362. https://doi.org/10.2307/2161078.

9. Goldstein S., Paszkiewicz A. Linear combinations of projections in von Neumann algebras. Proc. Am. Math. Soc., 1992, vol. 116, no. 1, pp. 175–183. https://doi.org/10.2307/2159311.

10. Marcoux L.W., Murphy G.J. Unitarily-invariant linear spaces in C* -algebras. Proc. Am. Math. Soc., 1998, vol. 126, no. 12, pp. 3597–3605. https://doi.org/10.1090/S0002-9939-98-04934-X.

11. Marcoux L.W. On the linear span of the projections in certain simple С*-algebras. Indiana Univ. Math. J., 2002, vol. 51, no. 3, pp. 753–771.

12. Bikchentaev A.M. Representation of linear operators in a Hilbert space in the form of finite sums of products of projectors. Dokl. Math., 2003, vol. 68, no. 3, pp. 376–379.

13. Bikchentaev A.M. On representation of elements of a von Neumann algebra in the form of finite sums of products of projections. Sib. Math. J., 2005, vol. 46, no. 1, pp. 24–34. https://doi.org/10.1007/s11202-005-0003-4.

14. Bikchentaev A.M. Representation of elements of von Neumann algebras in the form of finite sums of products of projections. II. Proc. Int. Conf. Operator Theory 20. Ser.: Theta Series in Advanced Mathematics. Vol. 6. Bucharest, Theta Found., 2006, pp. 15–23.

15. Bikchentaev A.M. On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in С*-algebras. Sb.: Math., 2008, vol. 199, no. 4, pp. 477–493. https://doi.org/10.1070/SM2008v199n04ABEH003929.

16. Komisarski A., Paszkiewicz A. Sums of compositions of pairs of projections. J. Oper. Theory, 2015, vol. 74, no. 2, pp. 307–317. http://dx.doi.org/10.7900/jot.2014jun17.2056.

17. Bikchentaev A.M., Sherstnev A.N. Projective convex combinations in С* -algebras with the unitary factorization property. Math. Notes, 2004, vol. 76, no. 4, pp. 578–581. https://doi.org/10.1023/B:MATN.0000043487.24773.04.

18. Bikchentaev A.M. Projection-convex combinations in С* -algebras and the invariant subspace problem, I. Math. Notes, 2006, vol. 79, no. 2, pp. 285–290. https://doi.org/10.1007/s11006-006-0032-8.

19. Murphy G.J. С*-algebry i teoriya operatorov [С*-Algebras and Operator Theory]. Moscow, Faktorial, 1997. 336 p. (In Russian)

20. Sherstnev A.N. Metody bilineinykh form v nekommutativnoi teorii mery i integrala [Methods of Bilinear Forms in Noncommutative Measure and Integral Theory]. Moscow, Fizmatlit, 2008. 264 p. (In Russian)

21. Bikchentaev A.M. Concerning the theory of 𝜎-measurable operators affiliated to a semifinite von Neumann algebra. Math. Notes, 2015, vol. 98, no. 3, pp. 382–391. https://doi.org/10.1134/S0001434615090035.

22. Halmos P.R. Gil’bertovo prostranstvo v zadachakh [A Hilbert Space Problem Book]. Moscow, Mir, 1970. 352 p. (In Russian)


Review

For citations:


Khadour M. A method for constructing idempotents in a unital algebra. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(2):384-396. (In Russ.) https://doi.org/10.26907/2541-7746.2025.2.384-396

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)