On some properties of the coefficients in the structural functions method
https://doi.org/10.26907/2541-7746.2025.2.244-266
Abstract
Some parameters of the structural functions method, which is used to construct an approximate solution to the elasticity problem for inhomogeneous solids, were analyzed. The equivalence of two existing approaches to computing structural functions was proved, and the set of known properties of structural functions was expanded. It was demonstrated that the method approximates the displacements in an inhomogeneous body by expressing them as a series involving derivatives of the displacements in a homogeneous (concomitant) body with the same geometry and loading. In practical applications, the series representation of the solution must be replaced by the partial sum of the series. For a specific class of approximate solutions to the concomitant problem, a relationship was established between the number of terms used in the partial sum of the series and the approximation order of the solution to the concomitant problem. Criteria for selecting elastic properties of the concomitant body were discussed.
Keywords
About the Author
L. A. KabanovaRussian Federation
Liubov A. Kabanova, Junior Researcher
Moscow
References
1. Gorbachev V.I. A homogenization method for boundary value problems of nonhomogeneous elasticity. Extended Abstract of Dr. Sci. (Physics and Mathematics) Diss. Moscow, 1991. (In Russian)
2. Gorbachev V.I. Effective elastic coefficients of an inhomogeneous solids. Mech. Solids, 2018, vol. 53, no. 4, pp. 454–463. https://doi.org/10.3103/S0025654418040118.
3. Gorbachev V.I. Differential equations with variable coefficients in the mechanics of inhomogeneous bodies. Mech. Solids, 2020, vol. 55, no. 3, pp. 396–402. http://dx.doi.org/10.3103/S0025654420030061.
4. Pobedrya B.E. Mekhanika kompozitsionnykh materialov [Mechanics of Composite Materials]. Moscow, Izd. Mosk. Univ., 1984. 336 p. (In Russian)
5. Voigt W. Ueber die Beziehung zwischen den beiden Elasticit¨atsconstanten isotroper K¨orper. Ann. Phys., 1889, Bd. 274, H. 12, S. 573–587. https://doi.org/10.1002/andp.18892741206. (In German)
6. Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizit¨atsbedingung f¨ur Einkristalle. Z. Angew. Math. Mech., 1929, Bd. 9, H. 1, S. 49–58. https://doi.org/10.1002/zamm.19290090104. (In German)
7. Polilov A.N., Tatus’ N.A. Biomekhanika prochnosti voloknistykh kompozitov [Strength Biomechanics of Fibrous Composites]. Moscow, Fiz.-Mat. Lit., 2018. 328 p. (In Russian)
8. Hashin Z., Shtrikman S. A variational approach to the elastic behavior of multiphase minerals. J. Mech. Phys. Solids, 1963, vol. 11, no. 2, pp. 127–140. https://doi.org/10.1016/0022-5096(63)90060-7.
9. Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Mettall., 1973, vol. 21, no. 5, pp. 571–574. https://doi.org/10.1016/0001-6160(73)90064-3.
10. Eshelby J.D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. London, Ser. A, 1957, vol. 241, no. 1226, pp. 376–396. https://doi.org/10.1098/rspa.1957.0133.
11. Volkov-Bogorodskii D.B., Lurie S.A. Eshelby integral formulas in gradient elasticity. Mech. Solids, 2010, vol. 45, no. 4, pp. 648–656. https://doi.org/10.3103/S0025654410040138.
12. Solyaev Yu.O. Kr¨oner’s self-consistent method to determine the effective elasticity constants of polycrystals. XIII Vserossiisk. s”ezd po teor. i prikl. mekhan.: sb. tez. dokl. Sankt-Peterburg, 21–25 avgusta 2023 g. [Proc. XIII All-Russ. Conf. on the Theoretical and Applied Mechanics. St. Petersburg, August 21–25, 2023 ]. Vol. 3. St. Petersburg, Politekh-Press, 2023, pp. 1001–1002. (In Russian)
13. Kriven G., Lurie S.A., Thang T.Q., Orekhov A.A. Strength, stiffness and damping properties of viscous fiber composites with longitudinal shear. Compos.: Mech., Comput., Appl., 2021, vol. 12, no. 4, pp. 1–22. https://doi.org/10.1615/CompMechComputApplIntJ.2021039237.
14. Lurie S.A., Kriven G.I. A study of the effective properties of compact bone tissues. Tech. Phys. Lett., 2024, vol. 50, no. 3, pp. 268–275. https://doi.org/10.1134/S1063785024700378.
15. Grigolyuk E.I., Kulikov G.M. Trends in the development of the theory of elastic multilayer plates and shells. Vestn. TGTU, 2005, vol. 11, no. 2, pp. 439–448. (In Russian)
16. Murakami H. Laminated composite plate theory with improved in-plane responses. J. Appl. Mech., 1986, vol. 53, no. 3, pp. 661–666. https://doi.org/10.1115/1.3171828.
17. Makovskii S.V. Dynamic properties of modified fiber-reinforced composites with viscose fibers. Extended Abstract of Cand. Sci. (Engineering) Diss. Мoscow, 2020. (In Russian)
18. Muizemnek A.Yu., Ivanova T.N., Kartashova E.D. A comparison of the experimental and numerical data on the effective characteristics of elastic properties in layered polymer composites from carbon and glass fibers. Vestn. PNIPU. Mekh., 2021, no. 2, pp. 88–105. https://doi.org/10.15593/perm.mech/2021.2.09. (In Russian)
19. Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh [Process Homogenization in Nonhomogeneous Media]. Moscow, Nauka, 1984. 352 p. (In Russian)
20. Rodr´ıguez-Ramos R., Otero J.A., Cruz-Gonz´alez O.L., Guinovart-D´ıaz R., Bravo-Castillero J., Sabina F.J., Padilla P., Lebon F., Sevostianov I. Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method. Int. J. Solids Struct., 2020, vol. 190, pp. 281–290. https://doi.org/10.1016/j.ijsolstr.2019.11.014.
21. Dimitrienko Yu.I., Karimov S.B., Dimitrienko A.Yu. Modeling of finite deformations of composite materials based on universal 𝐴n models and the asymptotic averaging method. Mat. Model. Chislennye Metody, 2024, no. 2, pp. 17–34. https://doi.org/10.18698/2309-3684-2024-2-1734. (In Russian)
22. Savenkova M.I. Using homogenization method for materials with physically nonlinear properties. Extended Abstract of Cand. Sci. (Physics and Mathematics) Diss. Moscow, 2013. (In Russian)
23. Sheshenin S.V., Skoptsov K.A. Plate theory based on the method of asymptotic expansion. Mat. Model. Chislennye Metody, 2014. no. 2, pp. 49–61. (In Russian)
24. Dimitrienko Yu.I., Yakovlev D.O. A comparative analysis of asymptotic theory of multilayer composite plates and three-dimentional theory of elastisity. Inzh. Zh.: Nauka Innovatsii, 2013, no. 7 (19), p. 17. URL: https://engjournal.bmstu.ru/catalog/mathmodel/technic/899.html. (In Russian)
25. Dimitrienko Yu.I., Yurin Yu.V. Asymptotic Timoshenko-type theory of thin multilayered plates. Mat. Model. Chislennye Metody, 2018, no. 1 (17), pp. 16–40. https://doi.org/10.18698/2309-3684-2018-1-1640. (In Russian)
26. Vlasov A.N. Reduction of the elasticity equation with random coefficients on a domain with periodic structure to a homogenized elasticity equation with constant coefficients. Effective stiffness tensor. Mekh. Kompoz. Mater. Konstr., 2021, vol. 27, no. 3, pp. 309–322. https://doi.org/10.33113/mkmk.ras.2021.27.03.309_323.02. (In Russian)
27. Gorbachev V.I. Green tensor method for solving boundary value problems of the theory of elasticity for inhomogeneous media. Vychisl. Mekh., 1991, no. 2, pp. 61–76. (In Russian)
28. Gorbachev V.I. Dynamic problems of composite mechanics. Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, no. 1, pp. 110–115. https://doi.org/10.3103/S1062873810121068.
29. Gorbachev V.I., Emel’yanov A.N. Homogenization of the equations of the Cosserat theory of elasticity of inhomogeneous bodies. Mech. Solids, 2014, vol. 49, no. 1, pp. 73–82. https://doi.org/10.3103/S0025654414010099.
30. Gorbachev V.I. Engineering resistance theory of heterogeneous rods made of composite materials. Vestn. MGTU im. N.E. Baumana. Ser. Estestv. Nauki, 2016, no. 6, pp. 56–72. https://doi.org/10.18698/1812-3368-2016-6-56-72. (In Russian)
31. Gorbachev V.I. The engineering theory of nonuniform composite plate strain. Mekh. Kompoz. Mater. Konstr., 2016, vol. 22, no. 4, pp. 585–601. (In Russian)
32. Gorbachev V.I., Gulin V.V. Exact solutions of some elasticity problems for the equilibrium of an anisotropic band with inhomogeneous width. Kompoz. Nanostrukt., 2021, vol. 13, nos. 3–4, pp. 120–126. (In Russian)
33. Solyaev Yu.O., Gorbachev V.I. Comparison of the Mori–Tanaka and Gorbachev–Pobedrya methods in the problem of determining the effective properties of composites with piezoelectric spherical inclusions. Mekh. Kompoz. Mater. Konstr., 2019, vol. 25, no. 1, pp. 57–75. https://doi.org/10.33113/mkmk.ras.2019.25.01.057_075.05. (In Russian)
34. Kabanova L.A. The first-order structural functions method solution to the simply supported layered plate bending problem. Lobachevskii J. Math., 2022, vol. 43, no. 7, pp. 1866–1877. https://doi.org/10.1134/s199508022210016x.
35. Kabanova L.A. Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem. Chebyshevskii Sb., 2022, vol. 23, no. 4 (85), pp. 211–232. https://doi.org/10.22405/2226-8383-2022-23-4-211-232. (In Russian)
36. Kabanova L.A., Romanov A.V. Comparison of approximate solutions to the quasi-static plate loading problem, obtained by the structural functions method and the finite element method. Chebyshevskii Sb., 2024, vol. 25, no. 4, pp. 175–196. https://doi.org/10.22405/2226-8383-2024-25-4-175-196. (In Russian)
37. Nowacki W. Teoriya uprugosti [Theory of Elasticity]. Moscow, Mir, 1975. 872 p. (In Russian)
38. Rabotnov Yu.N. Mekhanika deformiruemogo tverdogo tela [Mechanics of Deformable Solids]. Moscow, Nauka, 1998. 712 p. (In Russian)
39. Vasil’ev V.V., Lur’e S.A. On refined theories of beams, plates, and shells. J. Compos. Mater., 1992, vol. 26, no. 4, pp. 546–557. https://doi.org/10.1177/002199839202600405.
40. Reddy J.N. Theory and Analysis of Elastic Plates and Shells. Boca Raton, FL, CRC Press, 2006. 568 p. https://doi.org/10.1201/9780849384165.
41. Carrera E. Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Methods Eng., 2003, vol. 10, no. 3, pp. 215–296. https://doi.org/10.1007/BF02736224.
42. Vasiliev V.V. The theory of thin elastic plates – history and current state of the problem. Mech. Solids, 2024, vol. 59, no. 2, pp. 581–604. https://doi.org/10.1134/S0025654424700286.
43. Pagano N.J. Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater., 1970, vol. 4, no. 1, pp. 20–34. https://doi.org/10.1177/002199837000400102.
Review
For citations:
Kabanova L.A. On some properties of the coefficients in the structural functions method. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(2):244-266. (In Russ.) https://doi.org/10.26907/2541-7746.2025.2.244-266