Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Analytical approximation of solutions to the Blasius problem in the boundary layer on a flat plate

https://doi.org/10.26907/2541-7746.2025.2.227-243

Abstract

In recent years, the steady-state flow of viscous fluids has attracted considerable research interest due to its broad engineering applications. This study provides new insights into the classical problem of the theory of the viscous laminar stationary boundary layer of an incompressible Newtonian fluid on a thin flat plate (Blasius problem). A finite-difference solution to the Blasius problem was obtained by the shooting method in combination with the Runge–Kutta numerical scheme of the fourth-order accuracy over a large interval for a very fine mesh. The numerical results were validated against similar known data of calculation tests. The Blasius function f(η) and its first two derivatives were approximated using the third-order B-spline. Excellent agreement with the results of known calculations was demonstrated. A new analytical correlation for the Blasius function, which approximates the results of the calculations in a wide range of the self-similar variable η, was established by the nonlinear least squares method (NLLSM). The values of the function f and its first- and second-order derivatives were compared with known data. The results align with previous solutions. The longitudinal velocity profile in the boundary layer, defined through the derivative f′ of the Blasius function, can serve as the initial velocity profile in the numerical modeling of turbulent flat and three-dimensional flows of an incompressible fluid.

About the Author

V. M. Zubarev
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation

Vyacheslav M. Zubarev, Cand. Sci. (Physics and Mathematics), Researcher

Moscow



References

1. Tollmien W., Schlichting H., G¨ortler H., Riegels F.W. ¨Uber Fl¨ussigkeitsbewegung bei sehr kleiner Reibung. In: Riegels F.W. (Hrsg.) Ludwig Prandtl Gesammelte Abhandlungen. Berlin, Heidelberg, Springer, 1961, S. 575–584. https://doi.org/10.1007/978-3-662-11836-8_43. (In German)

2. Prandtl L., Wieghardt K. ¨Uber ein neues Formelsystem f¨ur die ausgebildete Turbulenz. Nachr. Akad. Wiss. Goettingen, Math.-Phys. Kl., Math.-Phys.-Chem. Abt., 1945, S. 6–19. (In German)

3. White F.M. Viscous Fluid Flow. 1 st ed. McGraw-Hill, 1974, pp. 233–237.

4. Loitsyanskii L.G. Mekhanika zhidkosti i gaza [Mechanics of Liquids and Gases]. Moscow, Nauka, Gl. Red. Fiz.-Mat. Lit., 1987, pp. 6–34, 59–73. (In Russian)

5. White F.M. Viscous Fluid Flow. 2nd ed. McGraw-Hill, 1991, pp. 233–253, 504–520.

6. Panton R.L. Incompressible Fluid Flow. New York, NY, Wiley, 1996, pp. 581–591.

7. Rosenhead L. (Ed.) Laminar Boundary Layers: An Account of the Development, Structure, and Stability of Laminar Boundary Layers in Incompressible Fluids, together with a Description of the Associated Experimental Techniques. Oxford, Clarendon Press, 1963, pp. 198–292, 419–420.

8. Burr K.P., Akylas T.R., Mei C.C. Chapter two. Two-dimensional laminar boundary layers. I-Campus Project. School-wide Program on Fluid Mechanics Modules on High Reynolds Number Flows. 2016, pp. 1–33. URL: https://web.mit.edu/fluids-modules/www/highspeed_flows/ver2/bl_Chap2.pdf.

9. Katopodes N.D. Chapter 9. Boundary-layer flow. In: Free-Surface Flow: Environmental Fluid Mechanics. Butterworth-Heinemann, 2019. pp. 652–708. https://doi.org/10.1016/b978-0-12-815489-2.00009-5.

10. Blasius H. Grenzschichten in Fl¨ussigkeiten mit kleiner Reibung. Z. Math. Phys., 1908, Bd. 56, H. 1, S. 1–37. URL: https://dokumen.tips/documents/blasius-h-1908-grenzschichten-in-fluessigkeiten-mit-kleiner-reibung.html. (In German)

11. Oleinik O.A. On a system of equations in boundary layer theory. USSR Comput. Math. Math. Phys., 1963, vol. 3, no. 3, pp. 650–673. https://doi.org/10.1016/0041-5553(63)90293-3.

12. Nickel K. Einige Eigenschaften von L¨osungen der Prandtlschen Grenzschicht-Differential- gleichungen. Arch. Ration. Mech. Anal., 1958, Bd. 2, H. 1, S. 1–31. https://doi.org/10.1007/bf00277916. (In German)

13. Niсkel K. Ein Eindeutigkeitssatz f¨ur instation¨are Grenzschichten. Math. Z., 1960, Bd. 74, H. 1, S. 209–220. https://doi.org/10.1007/BF01180484. (In German)

14. T¨opfer K. Bemerkung zu dem Aufsatz von H. Blasius : Grenzschichten in Fl¨ussigkeiten mit kleiner Reibung // Z. Math. Phys., 1912, Bd. 60, S. 397–398. (In German)

15. Hоwarth L. On the solution of the laminar boundary layer equations. Proc. R. Soc. London, Ser. A, 1938, vol. 164, no. 919, pp. 547–579. https://doi.org/10.1098/rspa.1938.0037.

16. Liu Y., Kurra S.N. Solution of Blasius equation by variational iteration. Appl. Math., 2011, vol. 1, no. 1, pp. 24–27. https://doi.org/10.5923/j.am.20110101.03.

17. He J.H. A simple perturbation approach to Blasius equation. Appl. Math. Comput., 2003, vol. 140, nos. 2–3, pp. 217–222. https://doi.org/10.1016/S0096-3003(02)00189-3.

18. Yun B.I. An iteration method generating analytical solutions for Blasius problem. J. Appl. Math., 2011, vol. 2011, no. 1, art. 925649. https://doi.org/10.1155/2011/925649.

19. Wazwaz A.-M. The variational iteration method for solving two forms of Blasius equation on a half-infinite domain. Appl. Math. Comput., 2007, vol. 188, no. 1, pp. 485–491. https://doi.org/10.1016/j.amc.2006.10.009.

20. Adomian G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl., 1988, vol. 135, no. 2, pp. 501–544. https://doi.org/10.1016/0022-247X(88)90170-9.

21. Liao S.J. A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate. J. Fluid Mech., 1999, vol. 385, pp. 101–128. https://doi.org/10.1017/s0022112099004292.

22. Parand K., Dehghan M., Taghavi A. Modified generalized Laguerre function Tau method for solving laminar viscous flow: The Blasius equation. Int. J. Numer. Methods Heat Fluid Flow, 2010, vol. 20, no. 7, pp. 728–743. https://doi.org/10.1108/09615531011065539.

23. Aminikhah H., Kazemi S. Numerical solution of the Blasius viscous flow problem by quartic B-spline method. Int. J. Eng. Math., 2016, vol. 2016, no. 1, art. 9014354. https://doi.org/10.1155/2016/9014354.

24. Motsa S.S. A new spectral local linearization method for nonlinear boundary layer flow problems. J. Appl. Math., 2013, vol. 2013, no. 1, art. 423628. https://doi.org/10.1155/2013/423628.

25. Liao S.-J. An explicit, totally analytic approximate solution for Blasius’ viscous flow problems. Int. J. Non-Linear Mech., 1999, vol. 34, no. 4, pp. 759–778. https://doi.org/10.1016/S0020-7462(98)00056-0.

26. Falkner V.M., Skan S.W. LXXXV. Solutions of the boundary-layer equations. London, Edinburgh, Dublin Philos. Mag. J. Sci., Ser. 7, 1931, vol. 12, no. 80, pp. 865–896. https://doi.org/10.1080/14786443109461870.

27. Asaithambi A. A second-order finite-difference method for the Falkner–Skan equation. Appl. Math. Comput., 2004, vol. 156, no. 3, pp. 779–786. https://doi.org/10.1016/j.amc.2003.06.020.

28. Meade D.B., Haran B.S., White R.E. The shooting technique for the solution of two-point boundary value problems. MapleTech, 1996, vol. 3, no. 1, pp. 1–8.

29. Sun B.-H. Solving Prandtl-Blasius boundary layer equation using Maple. Preprints, 2020, 2020080296. 12 p. https://doi.org/10.20944/preprints202008.0296.v2.

30. Givi P. Blasius similarity solution for boundary layer flow over a flat plate. MEMS1055, Computer Aided Analysis in Transport Phenomena. 11 p.

31. Bani-Hani E.H., Assad M.E.H. Boundary-layer theory of fluid flow past a flat-plate: Numerical solution using MATLAB. Int. J. Comput. Appl., 2018, vol. 180, no. 18, pp. 6–8. https://doi.org/10.5120/ijca2018916374.

32. Saber S.R.S. Pulsation spectrum of the developed turbulent boundary layer on a plate in an incompressible liquid. Extended Abstract of Cand. Sci. (Physics and Mathematics) Diss. Zhukovsky, MFTI, 2022. 117 p. (In Russian)

33. Khandelwal R., Kumawat P., Khandelwal Y. Solution of the Blasius equation by using Adomian Kamal transform. Int. J. Appl. Comput. Math., 2019, vol. 5, no. 1, art. 20. https://doi.org/10.1007/s40819-019-0601-7.

34. Majid Z.A., See P.P. Study of predictor corrector block method via multiple shooting to Blasius and Sakiadis flow. Appl. Math. Comput., 2017, vol. 314, pp. 469–483. https://doi.org/10.1016/j.amc.2017.06.038.

35. Mutuk H. A neural network study of Blasius equation. Neural Process. Lett., 2020, vol. 51, no. 3, pp. 2179–2194. https://doi.org/10.1007/s11063-019-10184-9.

36. Parlange J.Y., Braddock R.D., Sander D. Analytical approximations to the solution of the Blasius equation. Acta Mech., 1981, vol. 38, no. 1, pp. 119–125. https://doi.org/10.1007/BF01351467.

37. Schlichting H., Gersten K. Boundary-Layer Theory. Berlin, Heidelberg, Springer, 2017. pp. 156–164. https://doi.org/10.1007/978-3-662-52919-5.

38. Schlichting H. Boundary-Layer Theory. New York, NY, McGraw-Hill, 1979, pp. 95–101, 127–149, 163–170.

39. de Boor C. A Practical Guide to Splines. Marsden J.E., Sirovich L. (Eds.). Ser.: Applied Mathematical Sciences. Vol. 27. New York, NY, Springer, 2001. xvii, 346 p.

40. Zubarev V.M. The influence of strongly turbulized liquid flow parameters on the near-wall transitional flows in the boundary layer. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko- Matematicheskie Nauki, 2020, vol. 162, no. 1, pp. 38–51. https://doi.org/10.26907/2541-7746.2020.1.38-51. (In Russian)

41. Zubarev V.M. Investigation of combined effect of turbulence parameters of the main stream on a flow transition in a boundary layer. Therm. Processes Eng., 2016, vol. 8, no. 1, pp. 4–15. (In Russian)

42. Zubarev V.M. Modeling of a three-dimensional incompressible fluid flow in a turbulent boundary layer in a diffuser. Fluid Dyn., 2023, vol. 58, no. 8, pp. 1684–1696. https://doi.org/10.1134/S0015462823602644.


Review

For citations:


Zubarev V.M. Analytical approximation of solutions to the Blasius problem in the boundary layer on a flat plate. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(2):227-243. (In Russ.) https://doi.org/10.26907/2541-7746.2025.2.227-243

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)