On radially symmetric solutions of the Neumann boundary value problem for the p-Laplace equation
https://doi.org/10.26907/2541-7746.2025.1.150-168
Abstract
The Neumann boundary value problem for the p-Laplace equation with a low order term that does not satisfy the Bernstein–Nagumo condition was studied. The solvability of the problem in the class of radially symmetric solutions was investigated. A class of gradient nonlinearities was defined, for which the existence of a weak Sobolev radially symmetric solution that has a H¨older continuous derivative with exponent 1 p−1 was proved.
About the Authors
A. S. TersenovRussian Federation
Aris S. Tersenov, Dr. Sci. (Physics and Mathematics), Leading Researcher, Sobolev Institute of Mathematics, Siberian Branch
Novosibirsk
R. C. Safarov
Russian Federation
Rasul C. Safarov, Postgraduate Student
Novosibirsk
Karshi
References
1. Dall’Aglio A., Giachetti D., Segura de Le´on S. Global existence for parabolic problems involving the p-Laplacian and a critical gradient term. Indiana Univ. Math. J., 2009, vol. 58, no. 1, pp. 1–48. https://dx.doi.org/10.1512/iumj.2009.58.3409.
2. Dall’Aglio A., De Cicco V., Giachetti D., Puel J.-P. Existence of bounded solutions for nonlinear elliptic equations in unbounded domains. Nonlinear Differ. Equations Appl., 2004, vol. 11, no. 4, pp. 431–450. http://dx.doi.org/10.1007/s00030-004-1070-0.
3. Nakao M., Chen C. Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term. J. Differ. Equations, 2000, vol. 162, no. 1, pp. 224–250. http://dx.doi.org/10.1006/jdeq.1999.3694.
4. Sbai A., El Hadfi Y., Zeng S. Nonlinear singular elliptic equations of p-Laplace type with superlinear growth in the gradient. Mediterr. J. Math., 2023, vol. 20, no. 1, art. 32. https://doi.org/10.1007/s00009-022-02244-7.
5. Bueno H., Ercole G., Ferreira W.M., Zumpano A. Positive solutions for the p-Laplacian with dependence on the gradient. Nonlinearity, 2010, vol. 25, no. 4, pp. 1211–1234. http://dx.doi.org/10.1088/0951-7715/25/4/1211
6. De Figueiredo D.G, S´anchez J., Ubilla P. Quasilinear equations with dependence on the gradient. Nonlinear Anal.: Theory, Methods Appl., 2009, vol. 71, no. 10, pp. 4862–4868. http://dx.doi.org/10.1016/j.na.2009.03.061.
7. Iturriaga L., Lorca S., S´anchez J. Existence and multiplicity results for the p-Laplacian with a p-gradient term. Nonlinear Differ. Equations Appl., 2008, vol. 15, no. 6, pp. 729–743. https://doi.org/10.1007/s00030-008-0064-8.
8. Li J., Yin J., Ke Y. Existence of positive solutions for the p-Laplacian with p-gradient term. J. Math. Anal. Appl., 2011, vol. 383, no. 1, pp. 147–158. http://dx.doi.org/10.1016/j.jmaa.2011.05.008.
9. Ruiz D. A priori estimates and existence of positive solutions for strongly nonlinear problems. J. Differ. Equations, 2004, vol. 199, no. 1, pp. 96–114. https://doi.org/10.1016/j.jde.2003.10.021.
10. Zou H.H. A priori estimates and existence for quasilinear elliptic equations. Calculus Var. Partial Differ. Equations, 2008, vol. 33, no. 4, pp. 417–437. https://doi.org/10.1007/s00526-008-0168-3.
11. Gupta S., Dwivedi G. An existence result for p-Laplace equation with gradient nonlinearity in RN. Commun. Math., 2022, vol. 30, no. 1, pp. 149–159. https://doi.org/10.46298/cm.9316.
12. Leonori T., Porretta A., Riey G. Comparison principles for p-Laplace equations with lower order terms. Ann. Mat. Pura Appl., 2017, vol. 196, no. 3, pp. 877–903. https://doi.org/10.1007/s10231-016-0600-9.
13. Razani A. Game-theoretic p-Laplace operator involving the gradient. Miskolc Math. Notes, 2022, vol. 23, no. 2, pp. 867–879. https://doi.org/10.18514/MMN.2022.3467.
14. Precup R., Gheorghiu C.-l. Theory and computation of radial solutions for Neumann problems with-Laplacian. Qual. Theory Dyn. Syst., 2024, vol. 23, no. 3, art. 107. https://doi.org/10.1007/s12346-024-00963-8.
15. Pei M., Wang L., Lv X. Radial solutions for p-Laplacian Neumann problems involving gradient term without growth restrictions. Bull. Malays. Math. Sci. Soc., 2021, vol. 44, no. 4, pp. 2035–2047. https://doi.org/10.1007/s40840-020-01047-x.
16. Pei M., Wang L., Lv X. Radial solutions for p-Laplacian Neumann problems with gradient dependence. Math. Nachr., 2022, vol. 295, no. 12, pp. 2422–2435. https://doi.org/10.1002/mana.202000107.
17. Cianciaruso F., Infante G., Pietramala P. Multiple positive radial solutions for Neumann elliptic systems with gradient dependence. Math. Methods Appl. Sci., 2018, vol. 41, no. 16, pp. 6358–6367. https://doi.org/10.1002/mma.5143.
18. Bueno H., Ercole G. A quasilinear problem with fast growing gradient. Appl. Math. Lett., 2013, vol. 26, no. 4, pp. 520–523. https://doi.org/10.1016/j.aml.2012.12.009.
19. Tersenov Ar.S. Influence of gradient terms on the existence of solutins to the Dirichlet problem for p-Laplacian. J. Math. Sci., 2018, vol. 228, no. 4, pp. 463–474. https://doi.org/10.1007/s10958-017-3635-6.
20. Tersenov Ar.S. Radially symmetric solutions of the p-Laplace equation with gradient terms. J. Appl. Ind. Math., 2018, vol. 12, no. 4, pp. 770–784. https://doi.org/10.1134/S1990478918040178.
21. Tersenov Ar.S. On the existence of radially symmetric solutios for the p-Laplace equation with strong gradient nonlinearities. Sib. Math. J., 2023, vol. 64, no. 6, pp. 1443–1454. https://doi.org/10.1134/S0037446623060162.
22. Franchi B., Lanconelli E., Serrin J. Existence and uniqueness of nonnegative solutions of quasilinear equations in Rn. Adv. Math., 1996, vol. 118, no. 2, pp. 177–243. https://doi.org/10.1006/aima.1996.0021.
23. Gilbarg D., Trudinger N.S. Elliptic Partial Differential Equations of Second Order. Ser.: Grundlehren der mathematischen Wissenschaften. Vol. 224. Berlin, New York, NY, Springer, 1983. xiii, 513 p.
Review
For citations:
Tersenov A.S., Safarov R.C. On radially symmetric solutions of the Neumann boundary value problem for the p-Laplace equation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(1):150-168. (In Russ.) https://doi.org/10.26907/2541-7746.2025.1.150-168