Радиально-симметричные решения задачи Неймана для уравнения с p-лапласианом
https://doi.org/10.26907/2541-7746.2025.1.150-168
Аннотация
Рассмотрена задача Неймана для уравнения с p-лапласианом и младшим членом, не удовлетворяющим условию Бернштейна–Нагумо. Исследована разрешимость задачи в классе радиально-симметричных решений. Определен класс градиентных нелинейностей, для которого доказано существование слабого соболевского радиально-симметричного решения с производной, непрерывной по Гёльдеру с показателем 1 p−1 .
Об авторах
А. С. ТерсеновРоссия
Арис Саввич Терсенов, доктор физико-математических наук, ведущий научный сотрудник
г. Новосибирск
Р. Ч. Сафаров
Россия
Расул Чориёр угли Сафаров, аспирант
г. Новосибирск
г. Карши
Список литературы
1. Dall’Aglio A., Giachetti D., Segura de Le´ on S. Global existence for parabolic problems involving the p-Laplacian and a critical gradient term // Indiana Univ. Math. J. 2009. V. 58, No 1. P. 1–48. https://dx.doi.org/10.1512/iumj.2009.58.3409.
2. Dall’Aglio A., De Cicco V., Giachetti D., Puel J.-P. Existence of bounded solutions for nonlinear elliptic equations in unbounded domains // Nonlinear Differ. Equations Appl. 2004. V. 11, No 4. P. 431–450. https://dx.doi.org/10.1007/s00030-004-1070-0.
3. Nakao M., Chen C. Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term // J. Differ. Equations. 2000. V. 162, No 1. P. 224–250. https://dx.doi.org/10.1006/jdeq.1999.3694.
4. Sbai A., El Hadfi Y., Zeng S. Nonlinear singular elliptic equations of p-Laplace type with superlinear growth in the gradient // Mediterr. J. Math. 2023. V. 20, No 1. Art. 32. https://doi.org/10.1007/s00009-022-02244-7.
5. Bueno H., Ercole G., Ferreira W.M., Zumpano A. Positive solutions for the p-Laplacian with dependence on the gradient // Nonlinearity. 2010. V. 25, No 4. P. 1211–1234. https://dx.doi.org/10.1088/0951-7715/25/4/1211.
6. Figueiredo D.G, S´anchez J., Ubilla P. Quasilinear equations with dependence on the gradient // Nonlinear Anal.: Theory, Methods Appl. 2009. V. 71, No 10. P. 4862–4868. https://dx.doi.org/10.1016/j.na.2009.03.061.
7. Iturriaga L., Lorca S., S´anchez J. Existence and multiplicity results for the p-Laplacian with a p-gradient term // Nonlinear Differ. Equations Appl. 2008. V. 15, No 6. P. 729–743. https://doi.org/10.1007/s00030-008-0064-8.
8. Li J., Yin J., Ke Y. Existence of positive solutions for the p-Laplacian with p-gradient term // J. Math. Anal. Appl. 2011. V. 383, No 1. P. 147–158. https://dx.doi.org/10.1016/j.jmaa.2011.05.008.
9. Ruiz D. A priori estimates and existence of positive solutions for strongly nonlinear problems // J. Differ. Equations. 2004. V. 199, No 1. P. 96–114. https://doi.org/10.1016/j.jde.2003.10.021.
10. Zou H.H.Apriori estimates and existence for quasilinear elliptic equations // Calculus Var. Partial Differ. Equations. 2008. V. 33. P. 417–437. https://doi.org/10.1007/s00526-008-0168-3.
11. Gupta S., Dwivedi G. An existence result for p-Laplace equation with gradient nonlinearity in RN // Commun. Math. 2022. V. 30, No 1. P. 149–159. https://doi.org/10.46298/cm.9316.
12. Leonori T., Porretta A., Riey G. Comparison principles for p-Laplace equations with lower order terms // Ann. Mat. Pura Appl. 2017. V. 196, No 3. P. 877–903. https://doi.org/10.1007/s10231-016-0600-9.
13. Razani A. Game-theoretic p-Laplace operator involving the gradient // Miskolc Math. Notes. 2022. V. 23, No 2. P. 867–879. https://doi.org/10.18514/MMN.2022.3467.
14. Precup R., Gheorghiu C.-l. Theory and computation of radial solutions for Neumann problems with-Laplacian // Qual. Theory Dyn. Syst. 2024. V. 23, No 3. Art. 107. https://doi.org/10.1007/s12346-024-00963-8.
15. Pei M., Wang L., Lv X. Radial solutions for p-Laplacian Neumann problems involving gradient term without growth restrictions // Bull. Malays. Math. Sci. Soc. 2021. V. 44, No 4. P. 2035–2047. https://doi.org/10.1007/s40840-020-01047-x.
16. Pei M., Wang L., Lv X. Radial solutions for p-Laplacian Neumann problems with gradient dependence // Math. Nachr. 2022. V. 295, No 12. P. 2422–2435. https://doi.org/10.1002/mana.202000107.
17. Cianciaruso F., Infante G., Pietramala P. Multiple positive radial solutions for Neumann elliptic systems with gradient dependence // Math. Methods Appl. Sci. 2018. V. 41, No 16. P. 6358–6367. https://doi.org/10.1002/mma.5143.
18. Bueno H., Ercole G. A quasilinear problem with fast growing gradient // Appl. Math. Lett. 2013. V. 26, No 4. P. 520–523. https://doi.org/10.1016/j.aml.2012.12.009.
19. Tersenov Ar.S. Influence of gradient terms on the existence of solutins to the Dirichlet problem for p-Laplacian // J. Math. Sci. 2018. V. 228, No 4. P. 463–474. https://doi.org/10.1007/s10958-017-3635-6.
20. Tersenov Ar.S. Radially symmetric solutions of the p-Laplace equation with gradient terms // J. Appl. Ind. Math. 2018. V. 12, No 4. P. 770–784. https://doi.org/10.1134/S1990478918040178.
21. Tersenov Ar.S. On the existence of radially symmetric solutios for the p-Laplace equation with strong gradient nonlinearities // Sib. Math. J. 2023. V. 64, No 6. P. 1443–1454. https://doi.org/10.1134/S0037446623060162.
22. Franchi B., Lanconelli E., Serrin J. Existence and uniqueness of nonnegative solutions of quasilinear equations in Rn // Adv. Math. 1996. V. 118, No 2. P. 177–243. https://doi.org/10.1006/aima.1996.0021.
23. Gilbarg D., Trudinger N.S. Elliptic Partial Differential Equations of Second Order. Ser.: Grundlehren der mathematischen Wissenschaften. V. 224. Berlin, New York, NY: Springer, 1983. xiii, 513 p.
Рецензия
Для цитирования:
Терсенов А.С., Сафаров Р.Ч. Радиально-симметричные решения задачи Неймана для уравнения с p-лапласианом. Ученые записки Казанского университета. Серия Физико-математические науки. 2025;167(1):150-168. https://doi.org/10.26907/2541-7746.2025.1.150-168
For citation:
Tersenov A.S., Safarov R.C. On radially symmetric solutions of the Neumann boundary value problem for the p-Laplace equation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(1):150-168. (In Russ.) https://doi.org/10.26907/2541-7746.2025.1.150-168