Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Implementation of fast algorithms for 2D flow simulation using vortex particle methods

https://doi.org/10.26907/2541-7746.2025.1.99-114

Abstract

Vortex particle methods of computational hydrodynamics are widely employed by engineers to solve the problems of flow simulation and estimation of unsteady hydrodynamic loads acting on bodies. The main advantage of such methods is a relatively low computational cost, but their applicability is limited to subsonic incompressible single-phase non-heat-conducting flows. If high order discretization is required, the usage of direct algorithms leads to a significant increase in computational complexity and memory demand. To overcome this limitation, approximate fast algorithms of quasilinear computational complexity were developed and implemented for the most time consuming operations, such as the computation of convective velocities and the solution of the boundary integral equation. The general principles of fast algorithms were described. Their modifications for the problems mentioned above were discussed, and their efficiency was evaluated. The results obtained show that the application of fast algorithms enables a computational speedup of up to several hundred times for around a million vortex particles.

About the Authors

E. P. Ryatina
Bauman Moscow State Technical University
Russian Federation

Evgeniya P. Ryatina, Postgraduate Student, Department of Applied Mathematics

Moscow



I. K. Marchevsky
Bauman Moscow State Technical University
Russian Federation

Ilia K. Marchevsky, Dr. Sci. (Physics and Mathematics), Professor, Department of Applied Mathematics

Moscow



A. O. Kolganova
Bauman Moscow State Technical University
Russian Federation

Aleksandra O. Kolganova, Student, Department of Applied Mathematics

Moscow



D. Yu. Kobzar
Bauman Moscow State Technical University
Russian Federation

Dar’ya Yu. Kobzar, Student, Department of Applied Mathematics

Moscow



References

1. Lewis R.I. Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems. Cambridge Engine Technology Ser. 1. Cambridge, New York, NY, Cambridge Univ. Press, 1991. xxii, 566 p. https://doi.org/10.1017/CBO9780511529542.

2. Cottet G.-H., Koumoutsakos P.D. Vortex Methods: Theory and Practice. Cambridge, Cambridge Univ. Press, 2000. xiv, 313 p. https://doi.org/10.1017/CBO9780511526442.

3. Andronov P.R., Guvernyuk S.V., Dynnikova G.Ya. Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok [Vortex Methods for Non-Stationary Hydrodynamic Loads Calculation]. Moscow, MGU, 2006. 184 p. (In Russian)

4. Golovkin M.A., Golovkin V.A., Kalyavkin V.M. Voprosy vikhrevoi gidromekhaniki [Issues of Vortex Hydromechanics ]. Moscow, Fizmatlit, 2009. 265 p. (In Russian)

5. Branlard E. Wind Turbine Aerodynamics and Vorticity-Based Methods: Fundamentals and Recent Applications. Ser.: Research Topics in Wind Energy. Vol. 7. Cham, Springer, 2017. xxxi, 632 p. https://doi.org/10.1007/978-3-319-55164-7.

6. Mimeau C., Mortazavi I. A review of vortex methods and their applications: From creation to recent advances. Fluids, 2021, vol. 6, no. 2, art. 68. https://doi.org/10.3390/fluids6020068.

7. Guvernyuk S.V., Dynnikova G.Ya. Modeling the flow past an oscillating airfoil by the method of viscous vortex domains. Fluid Dyn., 2007, vol. 42, no. 1, pp. 1–11. https://doi.org/10.1134/S0015462807010012.

8. Dynnikova G.Ya. The Lagrangian approach to solving the time-dependent Navier–Stokes equations. Dokl. Phys., 2004, vol. 49, no. 11, pp. 648–652. https://doi.org/10.1134/1.1831530.

9. Ogami Y., Akamatsu T. Viscous flow simulation using the discrete vortex model — the diffusion velocity method. Comput. Fluids, 1991, vol.19, nos. 3–4, pp. 433–441. https://doi.org/10.1016/0045-7930(91)90068-S.

10. Kuzmina K., Marchevsky I., Ryatina E. VM2D: Open source code for 2D incompressible flow simulation by using vortex methods. Parallel Computational Technologies. PCT 2018: Proc. 12th Int. Conf. Sokolinsky L., Zymbler M. (Eds.). Ser.: Communications in Computer and Information Science. Vol. 910. Cham, Springer, 2018, pp. 251–265. https://doi.org/10.1007/978-3-319-99673-8_18.

11. KuzminaK., Marchevsky I., Soldatova I., Izmailova Y. On the scope of Lagrangian vortex methods for two-dimensional flow simulations and the POD technique application for data storing and analyzing. Entropy, 2021, vol. 23, no. 1, art. 118. https://doi.org/10.3390/e23010118.

12. Marchevsky I., Sokol K., Ryatina E., Izmailova Y. The VM2D open source code for two dimensional incompressible flow simulation by using fully Lagrangian vortex particle methods. Axioms, 2023, vol. 12, no. 3, art. 248. https://doi.org/10.3390/axioms12030248.

13. Kolganova A., Marchevsky I. Parallel implementation of fast algorithms in the vortex particle method. Parallel Computational Technologies. PCT 2023: Proc. 17th Int. Conf. Sokolinsky L., Zymbler M. (Eds.). Ser.: Communications in Computer and Information Science. Vol. 1868. Cham, Springer, 2023, pp. 197–211. https://doi.org/10.1007/978-3-031-38864-4_14.

14. Dynnikova G.Ya. An analog of the Bernoulli and Cauchy-Lagrange integrals for a time-dependent vortex flow of an ideal incompressible fluid. Fluid Dyn., 2000, vol. 35, no. 1. pp. 24–32. https://doi.org/10.1007/BF02698782.

15. Barnes J., Hut P. A hierarchical O(N logN) force-calculation algorithm. Nature, 1986, vol. 324, no. 6096, pp. 446–449. https://doi.org/10.1038/324446a0.

16. Greengard L., Rokhlin V. A fast algorithm for particle simulations. J. Comput. Phys., 1987, vol. 73, no. 2, pp. 325–348. https://doi.org/10.1016/0021-9991(87)90140-9.

17. Carrier J., Greengard L., Rokhlin V. A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput., 1988, vol. 9, no. 4, pp. 669–686. https://doi.org/10.1137/0909044.

18. Marchevsky I., Ryatina E., Kolganova A. Fast Barnes–Hut-based algorithm in 2D vortex method of computational hydrodynamics. Comput. Fluids, 2023, vol. 266, art. 106018. https://doi.org/10.1016/j.compfluid.2023.106018.

19. Dynnikova G.Ya. Fast technique for solving the N-body problem in flow simulation by vortex methods. Comput. Math. Math. Phys., 2009, vol. 49, no. 8, pp. 1389–1396. https://doi.org/10.1134/S0965542509080090.

20. Karras T. Maximizing parallelism in the construction of BVHs, octrees, and k-d trees. Proc. Eurographics/ACM SIGGRAPH Symp. on High Performance Graphics. Collect.: High Performance Graphics 2012. Eurographics Assoc., 2012, pp. 33–37. https://doi.org/10.2312/EGGH/HPG12/033-037.

21. Burtscher M., Pingali K. An efficient CUDA implementation of the tree-based Barnes Hut n-body algorithm. In: Hwu Wen-mei W. (Ed.) GPU Computing Gems Emerald Edition. Ch. 6. Morgan Kaufmann Publ., 2011, pp. 75–92. https://doi.org/10.1016/B978-0-12-384988-5.00006-1.

22. Kempka S.N., Glass M.W., Peery J.S., Strickland J.H., Ingber M.S. Accuracy considerations for implementing velocity boundary conditions in vorticity formulations. SANDIA Report No. SAND96-0583, UC-700. Sandia Natl. Lab., 1996. 52 p. https://doi.org/10.2172/242701.

23. Marchevsky I.K., Sokol K.S., Izmailova Yu.A. T-schemes for mathematical modelling of vorticity generation on smooths airfoils in vortex particle methods. Vestn. MGTU im. N.E. Baumana. Ser. Estestv. Nauki, 2022, no. 6 (105), pp. 33–59. https://doi.org/10.18698/1812-3368-2022-6-33-59. (In Russian)


Review

For citations:


Ryatina E.P., Marchevsky I.K., Kolganova A.O., Kobzar D.Yu. Implementation of fast algorithms for 2D flow simulation using vortex particle methods. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2025;167(1):99-114. (In Russ.) https://doi.org/10.26907/2541-7746.2025.1.99-114

Views: 62


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)