Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

Properties of stochastic operators of order v on a finite-dimensional simplex

https://doi.org/10.26907/2541-7746.2024.4.651-659

Abstract

   The necessary and sufficient conditions for stochasticity and bistochasticity of positive operators were analyzed. Key criteria for stochasticity of continuous positive operators in Rm were proved. The necessary and sufficient condition for these operators to be referred to as bistochastic was established.

About the Authors

Yu. Kh. Eshkabilov
Karshi State University
Uzbekistan

180119; Karshi



J. Z. Istamov
Karshi State University
Uzbekistan

180119; Karshi



References

1. Bernstein S.N. Solution of a mathematical problem connected with the theory of heredity. Ann. Math. Stat., 1942, vol. 13, no. 1, pp. 53–61.

2. Ulam S. Nereshennye matematicheskie zadachi [A Collection of Mathematical Problems]. Moscow, Nauka, 1964. 168 p. (In Russian)

3. Vallander S.S. On the limit behavior of iteration sequences of certain quadratic transformations. Dokl. Akad. Nauk SSSR, 1972, vol. 202, no. 3, pp. 515–517. (In Russian)

4. Lyubich Yu.I. Matematicheskie struktury v populyatsionnoi genetike [Mathematical Structures in Population Genetics]. Kyiv, Naukova Dumka, 1983. 296 p. (In Russian)

5. Ganikhodzhaev R.N. Quadratic stochastic operators, Lyapunov functions, and tournaments. Sb.: Math., 1993, vol. 76, no. 2, pp. 489–506. doi: 10.1070/SM1993v076n02ABEH003423.

6. Ganikhodzhaev R.N. On the definition of bistochastic quadratic operators. Russ. Math. Surv., 1993, vol. 48, no. 4, pp. 244–246. doi: 10.1070/RM1993v048n04ABEH001058.

7. Rozikov U.A., Khamraev A.Yu. On cubic operators defined on finite-dimensional simplexes. Ukr. Math. J., 2004, vol. 56, no. 10, pp. 1699–1711. doi: 10.1007/s11253-005-0145-3.

8. Shahidi F. On the extreme points of the set of bistochastic operators. Math. Notes, 2008, vol. 84, no. 3, pp. 442–448. doi: 10.1134/S0001434608090150.

9. Ganikhodzhaev R., Shahidi F. Doubly stochastic quadratic operators and Birkhoff’s problem. Linear Algebra Appl., 2010, vol. 432, no. 1, pp. 24–35. doi: 10.1016/j.laa.2009.07.002.

10. Shahidi F.A. On bistochastic operators defined on a finite-dimensional simplex. Sib. Math. J., 2009, vol. 50, no. 2, pp. 368–372. doi: 10.1007/s11202-009-0042-3.

11. Marshall A.W., Olkin I. Neravenstva: teoriya mazhorizatsii i ee prilozheniya [Inequalities: Theory of Majorization and Its Applications]. Moscow, Mir, 1983. 574 p. (In Russian)


Review

For citations:


Eshkabilov Yu.Kh., Istamov J.Z. Properties of stochastic operators of order v on a finite-dimensional simplex. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(4):651-659. (In Russ.) https://doi.org/10.26907/2541-7746.2024.4.651-659

Views: 171


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)