Preview

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Advanced search

The problem of satellite attitude stabilization in the geomagnetic field

https://doi.org/10.26907/2541-7746.2024.4.499-517

Abstract

   A satellite moving along a circular Keplerian orbit in near-Earth space was explored, focusing on its attitude stabilization in the orbital coordinate system using the intrinsic magnetic and Lorentz force moments. Fluctuations in geomagnetic induction that occur as the satellite orbits cause the coefficients in the dynamical equations governing the satellite’s attitude motion to vary over time. The results show that, although the linearized system of differential equations of the satellite’s motion is non-stationary, it can be reduced to a stationary system of higher order, which holds even for high-precision multipole models of the geomagnetic field. Thus, a control law design was proposed to stabilize the satellite. The controllability of the system was analyzed, and an optimal stabilization algorithm based on the LQR method was developed. The effectiveness of the proposed approach was validated by computer modeling.

About the Authors

V. I. Kalenova
Moscow State University
Russian Federation

119991; Moscow



V. M. Morozov
Moscow State University
Russian Federation

119991; Moscow



A. A. Tikhonov
St. Petersburg State University
Russian Federation

199034; St. Petersburg



References

1. Antipov K.A., Tikhonov A.A. Multipole models of the geomagnetic field: Construction of the N th approximation. Geomagn. Aeron., 2013, vol. 53, no. 2, pp. 257–267. doi: 10.1134/S0016793213020023.

2. Morozov V.M., Kalenova V.I., Rak M.G. Stabilization of stationary motions of a satellite near the center of mass in a geomagnetic field. Itogi Nauki Tekh. Ser. Sovrem. Mat. Ee Prilozh. Tematich. Obz., 2023, vol. 220, pp. 71–85. doi: 10.36535/0233-6723-2023-220-71-85. (In Russian)

3. Morozov V.M., Kalenova V.I., Rak M.G. Stabilization of stationary motions of a satellite near the center of mass in a geomagnetic field. Itogi Nauki Tekh. Ser. Sovrem. Mat. Ee Prilozh. Tematich. Obz., 2023, vol. 221, pp. 71–92. doi: 10.36535/0233-6723-2023-221-71-92. (In Russian)

4. Morozov V.M., Rak M.G., Kalenova V.I. Stabilization of stationary motions of a satellite near the center of mass in a geomagnetic field. Itogi Nauki Tekh. Ser. Sovrem. Mat. Ee Prilozh. Tematich. Obz., 2023, vol. 222, pp. 42–63. doi: 10.36535/0233-6723-2023-222-42-63. (In Russian)

5. Morozov V.M., Kalenova V.I., Rak M.G. Stabilization of stationary motions of a satellite near the center of mass in a geomagnetic field. Itogi Nauki Tekh. Ser. Sovrem. Mat. Ee Prilozh. Tematich. Obz., 2023, vol. 223, pp. 84–106. doi: 10.36535/0233-6723-2023-223-84-106. (In Russian)

6. Morozov V.M., Kalenova V.I., Rak M.G. Stabilization of stationary motions of a satellite near the center of mass in a geomagnetic field. Itogi Nauki Tekh. Ser. Sovrem. Mat. Ee Prilozh. Tematich. Obz., 2023, vol. 224, pp. 115–124. doi: 10.36535/0233-6723-2023-224-115-124. (In Russian)

7. Ovchinnikov M.Yu., Roldugin D.S. Current algorithms for active magnetic attitude control of satellites. Kosm. Appar. Tekhnol., 2019, vol. 3, no. 2, pp. 73–86. doi: 10.26732/2618-7957-2019-2-73-86. (In Russian)

8. Tikhonov A.A. Refinement of the oblique dipole model in the evolution of rotary motion of a charged body in the geomagnetic field. Cosmic Res., 2002, vol. 40, no. 2, pp. 157–162. doi: 10.1023/A:1015149420500.

9. Morozov V.M., Kalenova V.I. Satellite control using magnetic moments: Controllability and stabilization algorithms. Cosmic Res., vol. 58, no. 3, pp. 158–166. doi: 10.1134/S0010952520030041.

10. Kalenova V.I., Morozov V.M. Novel approach to attitude stabilization of satellite using geomagnetic Lorentz forces. Aerosp. Sci. Technol., 2020, vol. 106, art. 106105. doi: 10.1016/j.ast.2020.106105.

11. Kalenova V.I., Morozov V.M. Stabilization of satellite relative equilibrium using magnetic and Lorentzian moments. Cosmic Res., 2021, vol. 59, no. 5, pp. 343–356. doi: 10.1134/S0010952521050051.

12. Morozov V.M., Kalenova V.I., Rak M.G. On the stabilization of the regular precessions of satellites by means of magnetic moments. Mech. Solids, 2021, vol. 56, no. 8, pp. 1486–1499. doi: 10.3103/S0025654421080136.

13. Morozov V.M., Kalenova V.I. Stabilization of satellite relative equilibrium using magnetic moments and aerodynamic forces. Cosmic Res., 2022, vol. 60, no. 3, pp. 213–219. doi: 10.1134/S0010952522030066.

14. Kalenova V.I., Morozov V.M. Lineinye nestatsionarnye sistemy i ikh prilozheniya k zadacham mekhaniki [Linear Time-Varying Systems and Their Application to the Problems of Mechanics]. Moscow, Fizmatlit, 2010. 207 p. (In Russian)

15. Kalenova V.I., Morozov V.M., Rak M.G. On methodology for solving control problems of one class of time-varying systems. Lobachevskii J. Math., 2023, vol. 44, no. 11, pp. 4994–5000. doi: 10.1134/S1995080223110197.

16. Aleksandrov A.Yu., Aleksandrova E.B., Tikhonov A.A. Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system. Adv. Space Res., 2018, vol. 62, no. 1, pp. 142–151. doi: 10.1016/j.asr.2018.04.006.

17. Antipov K.A., Tikhonov A.A. On satellite electrodynamic attitude stabilization. Aerosp. Sci. Technol., 2014, vol. 33, no. 1, pp. 92–99. doi: 10.1016/j.ast.2014.01.004.

18. Beletskii V.V. Dvizhenie sputnika otnositel’no tsentra mass v gravitatsionnom pole [Motion of an Artificial Satellite about its Center of Mass in the Gravitational Field]. Moscow, Izd. Mosk. Univ., 1975. 308 p. (In Russian)

19. Wertz J. (Ed.) Spacecraft Attitude Determination and Control. Ser.: Astrophysics and Space Science Library. Vol. 73. Dordrecht, D. Reidel Publ. Co., 1978. xviii, 858 p. doi: 10.1007/978-94-009-9907-7.

20. Tikhonov A.A. A method of semipassive attitude stabilization of a spacecraft in the geomagnetic field. Cosmic Res., 2003, vol. 41, no. 1, pp. 63–73. doi: 10.1023/A:1022355730291.

21. Petrov K.G., Tikhonov A.A. The moment of Lorentz forces acting on a charged satellite in the Earth’s magnetic field. Part 2. the determination of the moment and estimations of its components. Vestn. S.-Peterb. Univ. Ser. 1, 1999, vol. 3, no. 15, pp. 81–91. (In Russian)

22. Aleksandrov A.Yu., Tikhonov A.A. Averaging technique in the problem of Lorentz attitude stabilization of an Earth-pointing satellite. Aerosp. Sci. Technol., 2020, vol. 104, art. 105963. doi: 10.1016/j.ast.2020.105963.

23. Nababi M., Barati M. Mathematical modeling and simulation of the Earth’s magnetic field: A comparative study of the models on the spacecraft of attitude control application. Appl. Math. Modell., 2017, vol. 46, pp. 365–381. doi: 10.1016/j.apm.2017.01.040.

24. Alken P., Th´ebault E., Beggan C.D., Amit H., Aubert J., Baerenzung J., Bondar T.N., Brown W.J., Califf S., Chambodut A., Chulliat A., Cox G.A., Finlay C.C., Fournier A., Gillet N., Grayver A., Hammer M.D., Holschneider M., Huder L., Hulot G., Jager T., Kloss C., Korte M., Kuang W., Kuvshinov A., Langlais B., L´eger J.-M., Lesur V., Livermore P.W., Lowes F.J., Macmillan S., Magnes W., Mandea M., Marsal S., Matzka J., Metman M.C., Minami T., Morschhauser A., Mound J.E., Nair M., Nakano S., Olsen N., Pav´on-Carrasco F.J., Petrov V.G., Ropp G., Rother M., Sabaka T.J., Sanchez S., Saturnino D., Schnepf N.R., Shen X., Stolle C., Tangborn A., Tøffner-Clausen L., Toh H., Torta J.M., Varner J., Vervelidou F., Vigneron P., Wardinski I., Wicht J., Woods A., Yang Y., Zeren Z., Zhou B. International Geomagnetic Reference Field: The thirteenth generation. Earth, Planets Space, 2021, vol. 73, art. 49. doi: 10.1186/s40623-020-01288-x.

25. Morozov V.M., Kalenova V.I. Lineinye nestatsionarnye sistemy i stabilizatsiya dvizheniya sputnika okolo tsentra mass v geomagnitnom pole [Linear Time-Varying Systems and Stabilization of a Satellite near the Center of Mass in the Geomagnetic Field]. Moscow, Izd. Mosk. Univ., 2023. 174 p. (In Russian)

26. Brewer J.W. Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst., 1978, vol. 25, no. 9, pp. 772–781. doi: 10.1109/TCS.1978.1084534.

27. Alexandrov A.Y., Tikhonov A.A. Electrodynamic control with distributed delay for AES stabilization in an equatorial orbit. Cosmic Res., 2022, vol. 60, no. 5, pp. 366–374. doi: 10.1134/S0010952522040013.

28. Ovchinnikov M.Yu., Roldugin D.S., Penkov V.I. Three-axis active magnetic attitude control asymptotical study. Acta Astronaut., 2015, vol. 110, pp. 279–286. doi: 10.1016/j.actaastro.2014.11.030.


Review

For citations:


Kalenova V.I., Morozov V.M., Tikhonov A.A. The problem of satellite attitude stabilization in the geomagnetic field. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(4):499-517. (In Russ.) https://doi.org/10.26907/2541-7746.2024.4.499-517

Views: 113


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7746 (Print)
ISSN 2500-2198 (Online)