Positive Fixed Points of Hammerstein Integral Operators with Degenerate Kernel
https://doi.org/10.26907/2541-7746.2024.3.437-449
Abstract
Positive fixed points of the Hammerstein integral operators with a degenerate kernel in the space of continuous functions C [0, 1] were explored. The problem of determining the number of positive fixed points of the Hammerstein integral operator was reduced to analyzing the positive roots of polynomials with real coefficients. A model on a Cayley tree with nearestneighbor interactions and with the set [0, 1] of spin values was considered. It was proved that a unique translation-invariant Gibbs measure exists for this model.
About the Authors
Yu. Kh. EshkabilovUzbekistan
Tashkent, 100025
Sh. D. Nodirov
Uzbekistan
Karshi, 180119
References
1. Abdou M.A., Badr A.A. On a method for solving an integral equation in the displacement contact problem. J. Appl. Math. Comput., 2002, vol. 127, no. 1, pp. 65–78. https://doi.org/10.1016/S0096-3003(01)00003-0.
2. Grimmer R., Liu J.H. Singular perturbations in viscoelasticity. Rocky Mt. J. Math., 1994, vol. 24, no. 1, pp. 61–75. https://doi.org/10.1216/rmjm/1181072452.
3. Keller J.B., Olmstead W.E. Temperature of nonlinearly radiating semi-infinite solid. Q. Appl. Math., 1972, vol. 29, pp. 559–566.
4. Krasnosel’skii M.A., Zabreiko P.P. Geometrical Methods of Nonlinear Analysis. Ser.: Grundlehren der mathematischen Wissenschaften. Vol. 263. Berlin, Heidelberg, New York, NY, Tokyo, Springer-Verlag, 1984. xx, 412 p.
5. Olmstead W.E., Handelsman R.A. Diffusion in a semi-infinite region with nonlinear surface dissipation. SIAM Rev., 1976, vol. 18, no. 2, pp. 275–291. https://doi.org/10.1137/1018044.
6. Abdou M.A. On the solution of linear and nonlinear integral equation. J. Appl. Math. Comput., 2003, vol. 146, nos. 2–3, pp. 857–871. https://doi.org/10.1016/S0096-3003(02)00643-4.
7. Abdou M.A., El-Borai M.M., El-Kojok M.M. Toeplitz matrix method and nonlinear integral equation of Hammerstein type. J. Comput. Appl. Math., 2009, vol. 223, no. 2, pp. 765–776. https://doi.org/10.1016/j.cam.2008.02.012.
8. Abdou M.A., El-Sayed W.G., Deebs E.I. A solution of nonlinear integral equation. Appl. Math. Comput., 2005, vol. 160, no. 1, pp. 1–14. https://doi.org/10.1016/S0096-3003(03)00613-1.
9. Faraci F. Existence and multiplicity results for a non linear Hammerstein integral equation. In: Giannessi F., Maugeri A. (Eds.) Variational Analysis and Applications. Ser.: Nonconvex Optimization and Its Applications. Vol. 79. Boston, MA, Springer, 2005, pp. 359–371. https://doi.org/10.1007/0-387-24276-7_23.
10. Horvat-Marc A. Positive solutions for nonlinear integral equations of Hammerstein type. Carpathian J. Math., 2008, vol. 24, no. 2, pp. 54–62.
11. Appell J.A., De Pascale E., Zabrejko P.P. On the unique solvability of Hammerstein integral equations with non-symmetric kernels. In: Appell J. (Ed.) Recent Trends in Nonlinear Analysis. Ser.: Progress in Nonlinear Differential Equations and Their Applications. Vol. 40. Basel, Birkhäuser, 2000, pp. 27–34. https://doi.org/10.1007/978-3-0348-8411-2_3.
12. Appell J., Kalitvin A.S. Existence results for integral equations: Spectral methods vs. fixed point theory. Fixed Point Theory, 2006, vol. 7, no. 2, pp. 219–234.
13. Bugajewski D. On BV-solutions of some nonlinear integral equations. Integr. Equations Oper. Theory, 2003, vol. 46, no. 4, pp. 387–398. https://doi.org/10.1007/s00020-001-1146-8.
14. Milojevi´c P.S. Solvability and the number of solutions of Hammerstein equations. Electron. J. Differ. Equations, 2004, no. 54, pp. 1–25.
15. Eshkabilov Yu.Kh., Nodirov Sh.D., Haydarov F.H. Positive fixed points of quadratic operators and Gibbs measures. Positivity, 2016, vol. 20, no. 4, pp. 929–943. https://doi.org/10.1007/s11117-015-0394-9.
16. Eshkabilov Yu.Kh., Nodirov Sh.D. Positive fixed points of cubic operators on R2 and Gibbs measures. J. Sib. Fed. Univ. Math. Phys., 2019, vol. 12, no. 6, pp. 663 673. http://dx.doi.org/10.17516/1997-1397-2019-12-6-663-673.
17. Eshkabilov Yu.Kh., Nodirov Sh.D. On the positive fixed points of quartic operators. Bull. Inst. Math., 2020, no. 3, pp. 27–36.
18. Prasolov V.V. Polynomials. Ser.: Algorithms and Computation in Mathematics. Vol. 11. Springer, 2000. xiii, 301 p. https://doi.org/10.1007/978-3-642-03980-5.
19. Rozikov U.A., Eshkabilov Yu.Kh. On models with uncountable set of spin values on a Cayley tree: Integral equations. Math. Phys., Anal. Geom., 2010, vol. 13, no. 3, pp. 275–286. https://doi.org/10.1007/s11040-010-9079-6.
20. Rozikov U.A. Gibbs Measures on Cayley Trees. Singapore, World Sci. Publ., 2013. 404 p. https://doi.org/10.1142/8841.
21. Georgii H.-O. Gibbs Measures and Phase Transitions. Ser.: De Gruyter Studies in Mathematics. Vol. 9. Berlin, New York, NY, De Gruyter, 2011. 545 p. https://doi.org/10.1515/9783110250329.
22. Eshkabilov Yu.Kh., Haydarov F.H., Rozikov U.A. Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree. J. Stat. Phys., 2012, vol. 147, no. 4, pp. 779–794. https://doi.org/10.1007/s10955-012-0494-x.
23. Eshkabilov Yu.Kh., Haydarov F.H., Rozikov U.A. Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree. Math. Phys., Anal. Geom., 2013, vol. 16, no. 1, pp. 1–17. https://doi.org/10.1007/s11040-012-9118-6.
Review
For citations:
Eshkabilov Yu.Kh., Nodirov Sh.D. Positive Fixed Points of Hammerstein Integral Operators with Degenerate Kernel. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2024;166(3):437-449. (In Russ.) https://doi.org/10.26907/2541-7746.2024.3.437-449