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Abstract

For a nonstrictly hyperbolic mildly quasilinear biwave equation in the first quadrant,
an initial-boundary value problem with the Cauchy conditions specified on the spatial half-line
and the Dirichlet and Wentzell conditions applied on the time half-line was examined. The so-
lution was constructed in an implicit analytical form as a solution of some integro-differential
equations. The solvability of these equations was investigated using the parameter continua-
tion method. For the problem under study, the uniqueness of the solution was proved, and
the conditions under which its classical solution exists were established. In the case when the
data were not smooth enough, a mild solution was constructed.
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Introduction

The classical linear biwave equation
(02 — a?A) (02 — D2 A)u(t,x) = f(t,%) (1)

applies to mathematical models related to the mathematical theory of elasticity.
For example, the Cauchy—Kovalevski-Somigliana solution of the elastodynamic wave
equation can be obtained by solving the biwave equation [1]. The Cauchy problem for
Eq. (1) was examined in [1,2] for the cases a # b and a = b, respectively.
The following equation is one of the simplest one-dimensional linear generalizations
of Eq. (1)
(07 — a207)(07 — 0?0 )u(t, x) + m*OFu(t,x) = f(t,x), (2)

on which the Timoshenko—Ehrenfest beam theory relies [3]. When the axial effect is
considered, the equation becomes [4]

(atQ - 0’285)(8152 - anI)u(ta ZL') + mQatQU(ta ZL') + Naiu(ta ZL') = f(tv $), (3)
taking the place of (2).
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A large class of boundary value problems was investigated in [5-9] for the linear
generalization of Eq. (1) expressed as

(07 = a®A) (07 — V> A)u(t,x) + Y al® (x)D*u(t,x) = f(t,%).

| <3

In [10], it was proposed to describe various physical processes by nonlinear equations
of the form

(02 — A)'u(t,x) = F(u(t,x), Au(t,x)). (4)

For I =1 and F(u,w) = F(u), Eq. (4) reduces to the standard nonlinear wave equation
(02 — A)u(t, =) = F(u(t,x)), which describes a scalar, spinless, and uncharged particle
in the quantum field theory [11]. The symmetry properties of Eq. (4) with [ = 2 and
F(u,w) = F(u) were studied in [11]. The solvability of boundary value problems for
Eq. (4) was analyzed using the Leray—Schauder fixed point theorem in [12-15].

All of Egs. (1)—(4), where | = 2, in the one-dimensional case, represent a special
instance of the following equation:

(02 — a20?)(0? — b0, )ult, ) = f(t,z,u(t,x), dpul(t, x), dyul(t, x),
at2u(t7x)vatazu(tvx)vazu(taz))a (5)

which is classified as (strictly) hyperbolic if @ # b and as nonstrictly hyperbolic if a = b.

This article focuses on the nonstrictly hyperbolic case of Eq. (5). Section 1 contains
a statement of the initial-boundary value problem. In Section 2, this problem is reduced
to the solution of integro-differential equations, and their solvability, uniqueness, and
well-posedness are established. In Section 3, the existence and uniqueness theorem for
the initial-boundary value problem is formulated. Section 4 outlines a mild solution
and proves its existence and uniqueness. The last section summarizes the findings of
the study.

1. Statement of the Problem

In the domain Q = (0,00) x (0,00) of two independent variables (t,z) € Q € R2,
the following one-dimensional nonlinear equation is considered:

(02 — a*0?)*u(t, x) = Flu|(t,x) := f(t,z,u(t,x), Opu(t, z), Opult, ),
D2u(t, x), 00, u(t, ), 0%u(t,x)), (6)

where a > 0 for definiteness, and f is a function defined on the set [0, 00) x [0, 00) x RS.
Equation (6) is equipped with the initial conditions

U(Oax) = 900(1')’ atu(o,l') = (P1($), 6152'“(0’1') = 902($)5 a?u(oax) = 903(1')’ T € [Oa OO()%)

and the boundary conditions
u(t,0) = uo(t), 02u(t,0) = ui(t), t € [0, 00), (8)

where o, @1, P2, ©3, lo, and puy are the functions defined on the half-line [0, 00).
As noted above, equations of the form (6) are used for modeling Timoshenko
beams [3] in the nonstrictly hyperbolic case, i.e., when the equality £ = kG holds,
where E is the elastic modulus of the beam material, G is the shear modulus of the
beam material, and x is the Timoshenko shear coefficient. The homogeneous boun-
dary conditions of the form wu(t,0) = d?u(t,0) = 0 correspond to a simply supported
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beam, the parameter a = y/FEp~1, and the function f can be defined by the formula
Flu)(t,z) == (kAGTtm™t + m=10? — EI1J'm~Y)q(t,x) — kAGJ10%u(t,z), where
A is the cross-sectional area of the beam, I is the second moment of cross-sectional
area, ¢(t,x) is a distributed load (force per unit length), m := pA, and J := pI.

2. Integro-Differential Equation

The domain @ is divided by the characteristic x — at = 0 into two subdomains
QY = {(t,x) € Q: (=1)/(at — z) > 0}, j = 1,2. In the closure QW) of each of the
subdomains Q) | the integro-differential equations considered are

x+at

6 2 2 21f 2t2 _ _ 2
WD () = / a?p1(2) + 2a”tps(2) ;— ga (z — 2)?) ¢3(2) Qo4
a
r—at
po(z —at) + @o(x +at) t(pi(z—at)+pi(x+at))
+ 5 - 7 +
t(D —at)—D t
+a( wo(x a)4 900($+a))+
t z+a(t—T)
20t — 7)2 — (z — 2)2) Flu®](r,
N e e =T D
a
0 z—a(t—T)
zJrat6(12<,01 (2) + 2atpa(2) + (a2t2 —(z — 2)2) v3(2)
uP(t,z) = / oy dz +
a
0
0
6 2 2 2t 2t2— 2
N / a?p1(2) + 2a%tps(2) ;aga (z +2)?) p3(2) 0o
at—x
o (¢ +at) — polat —2) _ wp:(0)
z _Z oz po(z +at) — polat — x _zP
*3 /“1< a)d'zﬂm(t a)Jr 2 2a T
0
T
t(p1(at —x) — pa(z +at))  wDug(0)  *PHo (t B E)
+ - + +
4 2a 2a
N at (Do (at — z)4f Dyo(z + at)) N
t z+a(t—T)
(aQ(t —7)2 — (2 — 2)2) ]-'[u(l)} (1,2)
+ / dr / a3 dz +

t—z/a z—a(t—T)

t—z/a zt+a(t—T)

N / ir / (a2(t —7)?% — (2 — z)2) f[u@)] (1, 2) s+

8a3

0 0
t—x/a a(t—T1)—x 5 5 5 5
P GRS e E T

8(13 dZ, (t,ZE) € Q(2)7

+

0 0
(10)

where D is the ordinary derivative operator.
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On the closure @ of the domain @, a function v is defined as the one coinciding
with the solution u9) of the integral equations (9) and (10)

u(t,z) =u(t,z), (t,z)€QW, j=1,2, (11)
on the closure Q) of the domain Q)

Theorem 1. Let the conditions o€ C?([0,00)), p1€C*([0,00)), waeC?([0,0)),
p3 € C%([0,00)), po € C*([0,00)), p1 € C3([0,00)), f € C*(Q x R®) hold. The func-
tion u belongs to the class C*(Q) and satisfies Eq. (6), the initial conditions (7), and
the boundary conditions (8) if and only if, for each j = 1,2, it is a solution of Egs. (9)
and (10) in the space C’Q(Q(j)) , subject to the following matching conditions:

Duo(O) =¢1(0),  11(0) = D*p0(0), (12)
10(0) = 2(0), D1 (0) = D?91(0), (13)
10(0) = ¢3(0),  D*u1(0) = D*p2(0), (14)

Y10(0) = 2a2D2<p2(0) —a*D%po(0) +
+ £(0,0,%0(0), 1(0), Do (0), ¢2(0), D<P1(0)7D2<P0(0))a (15)
Do (0) = G2D2<P3(0) +a* D%, (0) — 1(0) + D?1(0) x
X Ou,, £(0,0,00(0), 01(0), Dpo(0), ¢ ( ) De1(0), uzz = D?*p0(0)) +

+ Dp3(0)0u,, £(0,0,00(0), 01(0), Do (0), 92(0), ure = D1 (0), D¢y (0)) +

+ ©3(0)0u,, £(0,000(0), ¢1(0), Depo(0), use = ©2(0), Dep1(0), D0 (0)) +

+ D1 (0)u, £(0,0,90(0), ¢1(0), uz = Do(0), p2(0), Dg1(0), D*po(0)) +

+©2(0)0u, £(0,0,00(0), us = ©1(0), Do (0), 2(0), D1 (0), D00 (0)) +

+¢1(0)0u £ (0,0, u = ¢0(0), 91(0), Do (0), 2(0), Do ( ); D?p0(0)) +

+0:f (t = 0,0,00(0), 91(0), Dgo(0), 92(0), Dip1(0), D*p0(0)). (16)

Proof. 1. Let the function u € 04(@) satisfy Eq. (6) in @, the initial condi-

tions (7), and the boundary conditions (8) everywhere. Under a linear nondegenerate

change of the independent variables £ =z —at, n = z + at and with (¢, z) expressed
as v(&,n), the differential equation is transformed into

1 —
0202u(c.) = ool (15 )

Integrating it four times yields the equation

v(€,n) = f1(&) +nfa(§) + fa(n) +Efa(n) +

+ 161a4 idy/n(§ —y)(n — 2)Fu] (% %y) ds.
0

€l

Returning to the original variables ¢ and x, we obtain

u(t,x) = fi(x — at) + (z + at) fo(x — at) + f3(x + at) + (x — at) fa(x + at) +

r—at xz+at

i [ | <°””‘“f—y><w+at—z>f[u](22‘ay,Z;y)dz. a7

0 |z—at|
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By introducing functions g1, g2, g3, and g4

f1(z) = g1(2) — %C(Lz), fa(z) = 922_22), Fo(2) = gs(2) + zg;((lz), fal) = ~94(2)

we can rewrite (17) as

u(t,x) = g1(x — at) + tga(x — at) + gs(z + at) + tga(x + at) +
r—at xr+at

tia [ | <°””‘“f—y><w+at—z>f[u](22‘ay,Z;y)dz. (18)

0 |z—at|

Note that the functions g1, g2, g3, and g4 in the representation (18) should be deter-
mined by the initial conditions (7) and the boundary conditions (8). Substituting (18)
into (7), we obtain the following system

91(2) + g3(x) = po(x), = € [0,00), (19)
92(x) + ga(x) — aDgi(z) + aDgs(x) = p1(x), = € [0,00), (20)
/ 7@ — Z)agz(z, v) dy — 2aDgs(x) +
0

+2aDg4(z) + a®*D?*gy (x) + a®*D?g3(x) = 2(z), x € [0,00), (21)
/_ (z — y)azg(i,ay) +36(z,y) dy+
0

+a? (aD%g3(x) — aD’g1(x) + 3D?ga(x) + 3D%ga(w)) = pa(z), = € [0,00),

where G(y, z) is denoted as

2=y z+y
G(y,2) :]-'[u]( 5 3 )
From (19) and (20), we have
91(z) = po(x) — g3(x), g2(x) = ¢1(x) — ga(x) + aDgi(z) — aDgs(z), = € [0,00). (23)

Substituting (23) into (21) and (22), we get two ordinary differential equations

D3gs(z) = /7 (z — y)azg(lyé;) +3G(y, x) oy
0
- @Zg) SDZP;(@ + Dg*”;(‘”), z € [0,00), (24)
Dgy(z) = /—% dy —

0

D? D
_ aD293($) + a 900(1') + 902($) + 901($)’
4 4a 2

z € [0, 00). (25)
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Let us integrate Eqgs. (24) and (25)

%@Fﬁh+@x+@ﬁ+%/@f@m§/(€yW&%§+%mw) -
0
pola) L Je-Pa@ie+ L [a@de zeio), o)
0 0
ga(x) = Cy — aDgs(x) + 4%/@2(5) ¢ + (JD@T()(x)+
0
/dg/ 16 3 Y9 gy 4 9012(36), 2 € [0,00), (27)

where C1, Cy, Cs, and Cj are the integration constants. Substituting (23), (26),
and (27) into (18) results in

rz+at
6a%p1(z) + 2a2tp2(2) + (a®t? — (z — 2)?) p3(2)
u(t,z) = oy dz +
r—at
po(z —at) + @o(x +at) t(pi(z—at) +ei(x+at))
+ . - 7 +
N at (Dyg(xz — at)4f Dyo(z + at)) N

x—at x+at

1 z—y 24y
+16a4 / dy /(xaty)(z+atz)]:[u]< 55 9 >dz+
0 r—at
r—at

+(h]g@JMM%M2a@w+M$ZY)(y@@Q@JM@Zyﬁﬁ)
0

3244 dy +

xz+at

dy,

/Z —2)0.G(y, z )((ac —2)2— 2152)—i—g(y, )(3a2t2 +2at(y — z) — 3(z — z)Q)
32a4

(t,r) € QW). (28)
To simplify the expression (28), we integrate by parts, i.e.,

xz+at z

(y —2) ((z — 2)* — a®?) 9:G(y, 2)

/ dz/ 3941 dy =

0 0
xz+at a g )

a2t? y,
/ (z—2) %) / 32@4 dy
0 0
x+at

32a4

- / (2 = 22 — ) ds /(yfzwzg(y,z)—g<y,z)+g(y,z) .
0

0
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xz+at z
2 2,2 (y —2)0:G(y,2) — G(y, 2)
- /((x—z) —at)dz/ 2901 dy +
0 0
xz+at z g( )
N2 242 Y,z _
+ / ((z — 2)* — a®t?) dz 3941 dy
0 0
= (z — 2)? — a®t?, dU =2(z — ) dz
—zagy,> 9(y.2) __j(y—ag@¢> -
{ / 3244 dy|dz, V= 3200 W
0 0
. xz+at xz+at z g( )
_ F=rtat N2 2,2 Y,z
=UV - / VdU + / ((z —2)* — a*t?) dz 3941 dy
0 0 0
at+x z ( )( )g( ) r+at z g(
_ T—2)y —=2)yy,= N2 242 Y,
= / dz/ 6o dy + / (z—2)* —a’t )dz/ 391 dy. (29)
0 0 0 0
The resulting expression is
xz+at z
(y— 2)2.6(y, ) ((z — 2)*— a%?) +G(y, =) (3% + 2at(y — 2)—3(x — 2)?)
32a*
0 0
xz+at z
5 [l =z ty)lat +z - 2)G(y, 2) dy.
16a*
0 0

Similarly, the following calculation is performed:

I/ZZ/Z Gy, 2)(—3a*t* +2at(z—y) +3(z — 2)*) = (y — 2)9:G(y, 2) (& — 2)* = a*F?) dy =

32a4

z

0
_ / dz/ (at —x+y) at—i—x—z)g(y,z)dy.
r—at

16a4

Thus, there is an equation

r+at 9 9 9o )
u(t.z) = / 6ap1(2) + 2a’tps(2) 8+a§a 12 — (z — 2)2) p3(2)

dz +

x—at

pola — at) + ow +at) _ tpi(w— at) + pa(a+at)) |

+ 2 4
at (Dyg(x — at) — Dpg(x + at))
+
4
—at x+at
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xz+at z
1 2=y z2+vy —
— —at — — ),
60t / dz/(m at —y)(x + at z)f[u]( 5 5 ) dy, (t,z)eQ
r—at 0

(30)

Then, changing the variables 7 = (z — y)/(2a), £ = (2 +y)/(2) in the double integral
in the formula (30), we arrive at Eq. (9).

To define the functions g; and g for the negative values of the argument, the boun-
dary conditions (8) are used. Substituting the expression (18) yields the equations

g1(—at) +tga(—at) + gs(at) + tga(at) = po(t), t € [0,00), (31)
/ (zat - iif(y’ 91 g+ D2gy(—at) + tD%gs(—at) + (32)
0

+ D?g3(at) + tD?gs(at) = pi(t), t €0, 00). (33)

From (31), we have

—ags(—2) +apo (=) + 2g2(2) + 24(~2)
91(z) = aa , 2z € (—00,0]. (34)

Substituting (34) into (33) leads to a first-order ordinary differential equation

D —
5t T Dul=2)

Das(e / ~4)9, ) dyD%(‘a) o (=2)
0

z € (—00,0]. (35)

Integrating (35), we get

62(2) = / ¢ /

oo\_/
OJA

(oo
—)

DMO (_ ~ Dpo(0
2a2 2a2 ’

- 94( z € (700, O]a (36)
where the values ¢2(0), ¢4(0), and g4(—z) can be calculated by the formulas (23)
and (27). Then, using the representations (23), (26), (27), (34), and (36), we substitute
the functions g1, g2, g3, and g4 into the formula (17) for (¢,z) € @ 2), integrate by
parts as in (29), and get Eq. (10).

The continuity conditions for the function u and its partial derivatives up to and
including the fourth order, i.e.,

8fagu(1)(t,:c =at) = 858511(2) (t,x=at), 0<k+p<4, (37)

are also satisfied, where k& and p are nonnegative integers. It turns out that the equali-
ties (37) entail the matching conditions (12)—(16), which can be verified directly using
the algorithm outlined in [16]. Note that, in this case, the conditions (12)—(16) cannot
be strictly justified by differentiating the initial and boundary conditions, as was done,
for example, in [17].
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2. Assume that the representations (9)—(11) hold for the function u, which be-
longs to the classes CXQ(M) and C*(Q®@), and the conditions (12)-(16) are satisfied.
Then, by virtue of the smoothness conditions ¢y € C?([0,00)), ¢1 € C*([0,00)), 2 €
Cs([oaoo))a p3 € 02([0’00))7 Mo € 05([()’00))) M€ C?’([O,oo)), f € 02(@ X RG);
similar to [18], it follows that the function w belongs to the classes C‘%@) and
C"%W). We substitute the representations (9)—(11) into Eq. (6) and verify that the

function wu satisfies this equation in Q1) and Q2. In this case, for the function u to
belong to the class 04(6) , it is sufficient that the values of the functions «(? and «(
and the values of their derivatives up to and including the fourth order coincide with
each other on the characteristic x = at, i.e., that the equalities (37) hold. The latter
is equivalent to the validity of the conditions (12)—(16), as can be easily derived by
following the argument in the reverse order to that in item 1 of the proof, based on the
representations (9)—(11). O

Theorem 2. Let the conditions po€C?([0,00)), ¢1€C?([0,00)), p2€C([0,00)),
¢3 € C([0,00)), po € C3([0,00)), p1 € C'([0,00)), f € C(Q xR®) hold and the
function f satisfy the Lipschitz condition with L € C(Q) in the last siz variables, i.e.,

there exists the function L € C(Q) such that

6

‘f(t,$,U1,U2,U3,U4,U5,U6) - f(t,$721,22723724,25726)| < L(tv'r) Z |u’b - Z’L|
=1

Then, there exist unique solutions of Egs. (9) and (10) in the spaces C*QWM)) and

C’Q(Q(Q)) , respectively, and these solutions continuously depend on the initial data.

Proof. To be definite, consider Eq. (9) for the function u(!), which can be solved
by the parameter continuation method [19,20]. Set

z+at
6a%p1(2) + 2atpa(2) + (a®t? — (z — 2)?) ¢3(2)
v(t,x) = dz +
8a3
xr—at
po(x —at) + @o(x +at) t(pi(z—at) +pi(x+at))
+ 5 ~ 7 +
at (Dyg(z — at) — Dpg(x + at))
+ ;
4
t zt+a(t—T)
(a(t = 7)% = (z — 2)%) Flu(, 2)
K = .
[u](t, ) /dT oy dz
0 z—a(t—T)
Rewrite Eq. (9) in the operator form
uD(t,z) = KuWM](t,z) + vt z), (t,z)e Q. (38)

Let us also introduce the following family of equations with the parameter ¢ € [0, 1]:
uV(t, z) — e(K[uM] — K[0))(t,x) = w(t,z), (t,z)cQW, (39)
where w(t,z) = v(t,x) + K[0](t,z). It is clear that any solution ugl)(t,z) of Eq. (39)

with ¢ = 1 is also a solution of Eq. (38), and vice versa. Hence, the task reduces to
solving Eq. (39) when ¢ = 1.
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Let us introduce the set Q,, = {(t,2) | (t,z) € QW Az +at < m}, m € N. Due
to the smoothness conditions ¢y € C3([0,00)), 1 € C*([0,00)), w2 € C([0,00)),
¢3 € C([0,00)), po € C3([0,00)), p1 € C([0,00)), f € C(Q xRY), as in [18], we
conclude that K[g] € C%(Q,,), assuming that, for example, g € C%(Q,,,). It implies
that the operator K maps from the space C%(Q,) to the space C?(£,,). Let us show
that the operator K: C?(Q,,) — C?(Q,,) is Lipschitz-continuous. We have

:nJra(t T)

|K[u1](t, z) — K[ua](t, )] z‘/dr a*(t —7) _(3;;32) ) Flua](7, 2) do

z—a(t—T)

t z+a(t—T)

B /dT / (aQ(t —7)2 — (2 — 2)2) Flus](T, 2) & <

8a3 =

0 z—a(t—T)
t z—i—a(t ‘r) 5 5
‘ /dT Rt 7 — (2 2?) (Flualir.) — Fluslir. )

a3 dz| <
a

X

z—a(t—T)
t z+a(t—T)
< a/dT / |L(t, )| (Jur — ua| + |Orur — Orua| + |Orur — Ozua| +
0 z—a(t—T)
+ [0%uy — OFua| + |010rur — 0y Opuz| + |02ur — Ous|)(t, x) dz <
< aa| L e, llur — uszllc2a,)t® < am||Lilc@,) lur — u2llo2,,.)
(t,l‘) S Qm, uy € C ( m), Ug € 02(Qm), (40)
where

200 N2 (o N2
0 max a*(t —7) (x —2) .
(t,2)EQm 8a3

Proceeding to (40), we arrive at the estimate
|07 0 K [ua](t, ) — Oy K [u2] (£, )] < apllun — ualleza,,), (82) € Qum,
0<p+k<2 u €C*Qn), ug € C*(Q), (41)

where k and p are nonnegative integers, and a, is a constant determined by the
function L, the number a, and the set €, . It follows from (41) that

1K [u1] — K[ualllc2 (e, < Bllur — uzllc2(a,,), w1 € C*(Qm), uz € C*(Qn),  (42)

where 8 = apo+ a1,0+ ap1 + g0+ a1,1 + 2. The inequality (42) implies that the
operator K: C?(Q,,) — C?(Q,,) is Lipschitz-continuous.
Consider the operator K. defined by the formula

K. [u] = u—e(K[u] — K[0]).

Since the operator K: C?*(Q,) — C?(Q,,) is Lipschitz-continuous, the operator
K.: C?(Q,) — C?(Qy,) retains this property.

Let us prove that the operator K.: C?(Qy,) — C%(Qy) is coercive. To achieve this,
it suffices to derive an a priori estimate of the form

Hugl)HCZ(Qm) < Cllwlle2a,), (43)
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for the solution ugl) of Eq. (39), where C' is some constant that does not depend on

the function ugl) and the number . We have

[l (t,2)| = |w(t, z) + e(J[uD](t, 2) — K[0](t,2))| < [w]c@.)+
t z+a(t—T)

n E/dT (a2(t — 7‘)2 _ (x — z)2) (]:[u(l)] (T, Z) — .7:[0](7', Z)) ds| <
8a3
0 z—a(t—T)
t z+a(t—T)
< Hw||C(Qm) + a/dT / U(r,z)dz, (t,x) € Qp, (44)
0 z—a(t—T)
where

Ut o) = [u® (t,2)] + |0, (¢, 2)] + 0,6 (¢, 2)] +
+ 103D (t, 2)| + [0:0,u D (t, )| + |02u D (t,2)].  (45)
Similarly, we get
t  zta(t—r)
|3tu§1)(t,:c)| < wll e +’}/110/d7' / U(r,z)dz, (t,x) € Qnm, (46)

0 z—a(t—T)
t z+a(t—T)

.t < [0swlcio,y o0 [dr [ Urads (o) €m (D)
0 z—a(t—T)
07ulV (¢, )| <
t ¢
< H@wac(Qm) + M / U(ryz —a(t — 7)) dr + 1 /U(T, x+a(t—71))dr+
0 0
t z+a(t—T)
+ ngo/dT / U(r,z)dz, (t,x) € Qm, (48)
0 z—a(t—T)

|8tazugl)(t,x)| <
t t
< Hatamwﬂc(gm) + Ag / U(r,x —a(t — 7)) dr + 19 / U(r,z+a(t—7))dr +
0 0
t z+a(t—T)

+ 71,1 /dT / U(r,z)dz, (t,x) € Qm, (49)
0 z—a(t—T)

|02ulV (t, )] <

t t
< H@iw”c(gm) +)\3/U(7,x—a(t—T))dTJri/)g/U(T,:EqLa(th))quL
0 0

t z+a(t—T)
+ 7072/d7 / U(r,z)dz, (t,x) € Qm, (50)

0 z—a(t—T)
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where Y10, Y0,15 ¥2,05 Y1.15 V0,2, i (i =1,2,3), and ¢; (i = 1,2,3) are the constants,
which depend on the function L, the number a, and the set €, .
Summation of the inequalities (44)—(50) yields

t t
|U(t,z)| < [|w|lc2(,.) +)\/U(T,x—a(t—7))d7+1/1/U(T,:I:—i—a(t—T))dT—i—
0 0

t z+a(t—T)

+'y/dT / Ulr,2)dz, (t,z) € Qm, (51)

0 z—a(t—T)

where A = A1 + A2+ A3, ¥ =1 + 2+ 93, v =a+7y1,0+ 7,1+ 72,0 + 71,1 + 0,2
Let us denote V(s) = U(s,z — a(t — s)) for fixed = € {z |3t : (t,x) € Q}. Then,
we have

t

t
V) < oo + A / V(r)dr +¢ / Ulr,o +a(t — 7)) dr +
0 0

t zt+a(t—T)

+7/d7 / U(r,2)dz, (t,x) € Qm,

0 z—a(t—T)

Applying the Gronwall lemma to the preceding inequality, we obtain

t
V()] < <|wllc2(9m>+w/U(T,w+a(tT))dTJr
0

t z+a(t—T)
+ 'y/dT / U(r,z) dz) exp (At), (t,x) € Q.
0 z—a(t—T)

Using this technique iteratively, we get

t z+a(t—T)
Pm Am
|U(t,x)| < <|w||cz(9m) + ’y/dT / Ul(r,z) dz) exp <2_a exp 50 )
0 z—a(t—T)
(t,x) € Q.

Applying the multidimensional Gronwall lemma [21] to the preceding inequality, we
derive the estimate

A A
Ut )| < Hw||02(ﬂm) eXP(i—? eXp<2—ZL>) exp <7at2 exp <1/;—7: exp <£))>7

(t,z) € Q. (52)

The formulas (45) and (52) are actually the a priori estimates of the form (43). There-
fore, we have proved that the operator K.: C%(Q,) = C?(,,) is coercive.

Note that the function B: [0,1] 3 ¢ — A is continuous in the seminorm of the space
of Lipschitz-continuous operators [19]. It is obvious that B(0) = Ay is continuously
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invertible, as it corresponds to the identity operator. Considering this, we conclude
that the conditions of [19, Theorem 4] hold for the operator-function B. Therefore,
Eq. (39) has a unique solution in the space C?({,,,) for any ¢ € [0, 1], and this solution
continuously depends on the initial data. Thus, we have solved Eq. (38) in the space
C? ().

To construct the solution u of Eq. (38) in the space C*(Q()), consider the following
limit

u= mlgnoo U, (53)

where u,, (m € N) is the solution of Eq. (38) in the space C?(£2,,). We also assume
that the functions u,, € CQ()) are extended in some way outside the set (.

Let us prove the existence of the limit (53). Consider the functions w, and u,,,
where n < m. In this case, um|q, = u,. Otherwise, there would be a contradiction
with the uniqueness of the solution of Eq. (38) in the class C?(f2,). Thus, for any
e > 0, there exists an integer N(g) = m such that for any integer M > N(g) we have
lun — urllc2(q,,) < e. This indicates that the sequence (u,) is fundamental in any

seminorm of the form ||-|c2(q,), where k € N. Since |J Q, = QU), the topology

m=1

of the Fréchet space C*(QM) can be induced by a countable family of seminorms

|[lc2(0y) - So, the sequence (u,,) converges in the space C3(QM).
Next, we can prove that the limit (53) solves Eq. (38). Consider a point (tg,2g) €
QW . There exists a number m such that (to,z0) € Q. We have ulg, = u,,, where

m > n. Otherwise, there would be a contradiction with the uniqueness of the solution
of Eq. (38) in the class C?(€2,). Then,

u(to, o) = wm(to, zo) = Kum](to, o) + w(t, x). (54)

Let us pass to the limit as m — oo in (54) and obtain

u(to,zo) = lim (K [um](to, xo) + w(to,x0)) = K[ lim ., | (to, zo) + w(to,xo) =

m—0o0 m— 00

= K[u(to, z0) + w(to, zo0).

Given the arbitrariness of the point (to,z9) € Q) and the preceding equality, we
conclude that the function u defined by the limit (53) is a solution of Eq. (38) in the
class C%(Q).

Let us prove that the limit (53) is the unique solution of Eq. (38). Assume that

Eq. (38) has two solutions u and @ in the space C*Q(")). Then, the functions u|q,,

and 1|g,, are the solutions of Eq. (38) in the class C%(Q,,). Therefore, u|q, = i|q,, -

Since |J Q,, = QW) we arrive at the equality u = u. This proves that Eq. (38) has
m=1

a unique solution in the class C3(Q™).

Therefore, we have constructed a unique solution of Eq. (9) in the class CQ(Q(U) .

The existence of a unique solution of Eq. (10) in the class C*(Q(®)), which continuously
depends on the initial data, can be proved in a similar way. O
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3. Classical Solution

The following theorem is a consequence of Theorems 1 and 2.

Theorem 3. Let the conditions po€C®([0,00)), p1€C*([0,00)), p2€C3([0,00)),
p3 € C*([0,00)), po € C?([0,00)), w1 € C3([0,00)), f € C*(Q x RS) hold and the

function f satisfy the Lipschitz condition with L € C(Q) in the last siz variables, i.e.,

there exists the function L € C(Q) such that

6
‘f(t,$,U1,U2,U3,U4,U5,U6) - f(t,$721,22723724,25,ZG)| < L(tv'r) Z |u’b - Z’L|
i=1

Then, the initial-boundary value problem (6)—~(8) has a unique solution u in the class
C*(Q) if and only if the conditions (12)—~(16) are satisfied. This solution is determined
by the formulas (9)—(11).

4. Mild Solution

Consider the problem (6)—(8) for the case, where the functions ¢g, ¢1, @2, ©3, o,
11, and f are not smooth enough.

Definition 1. We define the function w representable in the form (9)—(11) as a
mild solution of the problem (6)—(8).

Remark 1. Any classical solution of the problem (6)—(8) is also a mild solution of
this problem.

Remark 2. If the additional smoothness conditions g € C°([0,00)), 1 €
C4([0,00)), w2 € C3([0,00)), 3 € C*([0,00)), po € C°([0,00)), p1 € C3([0,00)),
f € C?(Q x RY) and the matching conditions (12)—(16) hold, then the mild solution of
problem (6)—(8) is classical.

Let Q =Q\ {(t, )|z = at}.

Theorem 4. Let the conditions o€ C?([0,00)), ¢1€C?([0,00)), 2 € C*([0,0)),
@3 € C([0,00)), po € C3([0,00)), p1 € C'([0,00)), f € C(Q xR®) hold and the

function f satisfy the Lipschitz condition with L € C(Q) in the last siz variables, i.e.,

there exists the function L € C(Q) such that

6
| F(t, 2, un, un, us, wa, us, ug) — f (@, 21, 22, 28, 24, 25, 26) | < Lt ) Y |ui — 2.

i=1

Then, the initial-boundary value problem (6)—(8) has a mild solution w in the class
Q).

Proof. The solvability of the integral equations (9) and (10) and the belonging

of their solutions to the classes of C%(QM) and C*Q?)), respectively, follows from
Theorem 2. O

If the matching conditions (12)—(16) are partially met, the smoothness of the mild
solution can be increased, i.e., the following theorem holds.
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Theorem 5. Let the conditions o€ C?([0,00)), p1€C?([0,00)), paeC([0,0)),
¢3 € C([0,00)), po € C3([0,00)), p1 € C'([0,00)), f € C(Q xRE) hold and the
function f satisfy the Lipschitz condition with L € C(Q) in the last siz variables, i.e.,

there exists the function L € C(Q) such that
6
| F(t, 2, un, un, us, wa, us, ug) — f (@, 21, 22, 28, 24, 25, 26) | < Lt ) Y |ui — 2.
i=1

Then, the initial-boundary value problem (6)—(8) has a mild solution w in the class

CQ(@) NC(Q) if and only if vo(0) = po(0).

Proof. 1. Let us prove the necessity of the condition ¢o(0)=po(0). If u€C(Q)
t'hen 1(0,0) :%1_12% u(t, O) =i1_>1?(10 u(0, x) The representations (9)—(11) imply }1_1% u(t,0)
lim 420 (¢) = p(0) and lim (0, ) = lim go(2) =0 (0). Hence, ¢o(0)=po(0).

2. Let us prove the sufficiency of the condition ¢o(0) = po(0). According to

Theorem 4, there exist a unique mild solution u € C*(Q) of the problem (6)—(8). Using
the formulas (9)—(11), we compute

[(w)* = () 7](t,x = at) = u!D(t, at) — u®(t,at) = o(0) — 10(0), (55)

where (u)*(t,z = at) = 6111%1+ u(t,a t+4). Using (55), we conclude that u € C(@) . O
—

Conclusions

Sufficient conditions for the existence of a unique classical solution of the initial-
boundary value problem in the first quadrant for a nonstrictly hyperbolic mildly quasi-
linear biwave equation are established. The results obtained show that the failure to
meet the matching conditions makes it impossible to construct a classical solution in
the entire first quadrant. In the case when the initial data are insufficiently smooth,
a mild solution of the initial-boundary value problem is constructed, and its uniqueness
is proved.
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