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Abstract

BUG algorithms are effective strategies for local path planning in unknown environments. This
article presents a practical implementation of the InsertBug algorithm using the Robot Operating
System (ROS) and highlights its challenges. The algorithm relies on laser sensor and odometry
data to construct a locally optimal path in an unknown terrain. Its evaluation was performed in the
Gazebo 3D virtual environment, employing the TurtleBot 3 Burger robot. The evaluation spanned three
types of environments: mazes, settings with simple convex and concave obstacles, and office spaces.
The algorithm was assessed based on the robot’s overall traveled distance and accumulated turns in yaw
rotations measured in radians. The findings demonstrate the effectiveness of the algorithm in diverse
layouts. The implementation serves as a valuable resource to further advance autonomous navigation
systems.
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AnHoTanus

BUG-anropurmbl sBistioTcst 9 heKTUBHBIM peIlieHneM J1JjIsI JOKAJIbHOW HaBUTAInd POOOTOB B HEM3-
BECTHBIX cpefiaX. B craTbe paccMOTPEHBI OCODEHHOCTH U CJIOYKHOCTH ITPAKTUYIECKON Peau3allui ajro-
purma InsertBug ma 6ase poboToTEXHMUECKOI omepamuonHoi cucteMbl ROS, KOTOPBIA HCIOJB3yeT
JIAHHBIE JIA3EPHOTO TAJbHOMEPA U OIOMETPHUH JIJIsi TIOCTPOEHUS JIOKAJIbHO ONTUMAJIBLHOTO IYTH B HEU3-
BECTHOIT cpejie. Anpobalinsi pa3paboTaHHOIO aJropuTMa IpoBoamIack Ha pobore TurtleBot 3 Burger
B BuUpTyasbHOil cpeje Gazebo. DddeKTUBHOCTE aJropuT™Ma OIEHUBAJIACH B JIAOMPUHTAX, CPejiax C
[IPOCTBIMU BBIMYKJIBIMA U BOTHYTBIME IIPENSTCTBUSIME, & TaKyKe B YCJIOBUSIX, HMUTHPYIOMUX OQUC-
HbIe TIOMEITeHNs. KpuTepusiMu OIeHKN CJIy>KUIN MPpoiiieHHOoe POGOTOM PACCTOSTHUE M CyMMa, YTJIOBBIX
Bpartennii. [losydaeHHbIe pe3y/IbTaThl MOATBEPKIAIOT BEICOKYIO 3(D(PEKTUBHOCTD aJrOPUTMA B PA3JIAYI-
HBIX CpejlaX U JEeMOHCTPHUPYIOT CYIIEeCTBEHHBINH BKJIAI, KOTOPBIH BHOCUT TPEJCTABICHHAS PEATUBAIINS
B JlaJIbHEIIIIee PA3BUTHE U COBEPIIEHCTBOBAHUE CUCTEM aBTOHOMHON HABUTAIMH POOOTOB.

Kuarouessbie ciioBa: pobororexnmka, yrpaB/ienue, aaropuTM, IJIAaHIPOBAHUE Iy TH, n30eranue mpe-
ATCTBUM, HaBurarus pobota, InsertBug, TangentBug
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Introduction

Optimal path planning is a fundamental task in robotics, which can be solved using two
different approaches: global and local path planning. Global path planning is based on a priori
known parameters and obstacles of an environment and requires a robot to navigate through
a predetermined space. In local path planning, a robot moves in an unknown environment and
adjusts its path relying solely on sensory data [1].

The BUG family of algorithms employs local path planning and the power of laser
rangefinders (LRF) and odometry data for robot localization and navigation. Since a robot
has no prior knowledge of the environment, it decides its path in real time. BUG algorithms
enable a robot to plan the path in two modes: following the boundary of an obstacle and moving
towards a goal.

In the available studies on this topic, BUG algorithms have primarily been described
mathematically, often with no details on how to implement them. For example, in [2], the motion
of a robot viewed as a material point was analyzed, and the path planning simulation took
place in a 2D world. Most BUG algorithms have been implemented in a similar manner, i.e.,
using conceptual tools such as Matlab or custom tools developed exclusively for individual
algorithms, thus making it difficult to replicate virtual experiments or adapt such algorithms
to fit other algorithms of the family. In [3], the authors compared eleven BUG algorithm
variations against each other on the EyeSim simulation platform. In [4-6], the effectiveness
of BUG algorithms for navigation in simulated environments was examined, considering
scenarios with multi-robot path planning. In [7], the CautiousBug algorithm was proposed
for safe and reliable sensory-based navigation, and its performance was evaluated through the
theoretical analysis supported by mathematical proofs and virtual testing of a custom Linux
application developed for the TangentBug [6] and CautiousBug algorithms. In contrast, this
article presents an implementation of the InsertBug algorithm in a 3D virtual environment using
the open-source Gazebo simulator, which has become a de facto standard in mobile robotics
simulation. The applicability of our implementation outside of Gazebo in real-world scenarios,
when integrated into a real robot control system, is shown.

1. Previous Research Overview

1.1. Comparison with other algorithms. Previous research highlights that, despite
sharing many similarities, BUG algorithms differ in the conditions and/or sensors they require
for the path planning process. For example, the Bugl and Bug2 algorithms use tactile sensors
rather than LRF. Tactile sensors help a robot identify the presence (or absence) of an occluding
obstacle in its path [1]. Yet, they are often considered a last-resort option due to their limited
detection range and lower resolution compared to other types of sensors.

More advanced algorithms, such as Algl and Alg2, analyze the traveled path and enable a
robot to visit the waypoints more than once [8]. The VisBug21 and VisBug22 algorithms [9],
among the first to incorporate an LRF, extend the Bug2 algorithm. A robot equipped with
LRF makes more informed and safe decisions while navigating, as it can identify obstacles from
a distance and plan its path accordingly. In [10], the path lengths generated by the Boundary
Following Fast Matching Method (BF-FMM) were compared with those created using the Bugl
and Bug2 algorithms to quantitatively determine the impact of environmental uncertainty on
path length.
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The DistBug algorithm [11] uses refined concepts that enhance its performance in complex
environments with convex obstacles and mazes. The TangentBug algorithm [6] and all its
derivatives (including CautiousBug [7], WedgeBug [12], and InsertBug [13]) utilize a model of
the surrounding environment derived by processing data about obstacles and representing them
as points. In [14], a virtual planning technique inspired by the BUG algorithm was proposed
to quickly calculate paths in an obstacle-rich environment, facilitating the identification of the
shortest path to the goal.

The above navigation algorithms optimize a robot’s movements towards a target position,
making the task of maneuvering around obstacles less critical. Comparative studies of various
algorithms, such as the one conducted by Ng and Braunl [3], provide valuable insights into
their effectiveness in different environments. However, in [3|, the conceptual implementation
of the algorithm was presented without practical details, with the resulting code being more
theoretical and having limited applicability. This comparative analysis shows that Bugl-type
algorithms [1| have longer paths than TangentBug-type algorithms. Additionally, in [13], it was
demonstrated that InsertBug is faster than TangentBug in route construction. Sensor fusion in
robots can further improve the robustness and accuracy of BUG algorithms [15].

1.2. Application of BUG algorithms. The application of BUG algorithms has been
widely studied in various contexts of autonomous navigation. In [16], an improved obstacle
avoidance and navigation algorithm was introduced for autonomous mobile robots in indoor
environments based on the Bug-2 algorithm. The results obtained confirm the effectiveness of
applying these algorithms in real-world confined spaces.

Another study, [17], proposes a method of autonomous navigation that takes into account
the kinematic constraints of a robot and uses a combination of the Dubins path and the BUG
algorithm for safe and efficient path planning. The simulation based on the developed method
shows the flexibility of BUG algorithms when adapted to specific robot constraints.

In [18], the use of BUG algorithms for robot motion planning in an unknown environment
with danger zones was discussed, and the capability of BUG algorithms to handle navigation
tasks in complex and hazardous conditions was validated.

In [19], the performance of path planning algorithms, including BUG algorithms, in dynamic
environments for omnidirectional robots was explored. It was found that BUG algorithms can
be effectively used even in conditions that require high maneuverability and adaptability.

Furthermore, in [20], a broad analysis of various path planning algorithms, such as BUG
algorithms, and their application in complex environments was carried out. This review helps
to broaden the context of BUG algorithm applications, highlighting their significance and
capabilities in various challenging scenarios.

2. InsertBug Overview

The algorithms of the BUG family were developed for navigating a material point in an
unknown space filled with polygonal obstacles. More advanced algorithms, such as TangentBug
and InsertBug, utilize LRF to avoid obstacles and construct routes. In the InsertBug algorithm,
the sensor enables a robot to identify points in space that are close to the target point and free
of obstacles. The robot uses these points as temporary targets or waypoints. Upon reaching
each waypoint, it verifies its proximity to the final, user-defined target point. Selecting optimal
points during the path planning is crucial to minimize a travel distance, find a collision-free
path, and ensure the algorithm’s completeness. We use the following notations:
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Target (7T) — the final target point, which the robot is tasked to reach.
Locally optimal direction — the direction of the shortest path to the target.
d(w,T) — the Euclidean distance from a point w, located within a free space, to T.

dmin (T) — the shortest Euclidean distance for the robot moving along the boundary of an
obstacle to the target.

Local minimum — the basin of attraction of a local minimum of d(w,T).

The robot starts from a user-defined initial point and moves to its target (goal point),
sensing the environment and navigating through the surroundings. The algorithm’s outline is
given in Fig. 1:

(a)

(b)

Build an initial set of path vectors: scan the entire space to identify circular obstacles.
Use sensor data to detect these obstacles and represent them as vectors from the robot’s
position to the centers of the identified obstacles.

Obstacle detection and path adjustment: determine if there are obstacles blocking
the current path vector. If an obstacle is detected, calculate the intermediate waypoint
to bypass it and insert the coordinates of the point into the current set of path vectors.

Path recalculation: adjust the path vectors to navigate around the detected obstacles.
Update the set of path vectors by inserting intermediate waypoints where necessary to
avoid obstacles.

Navigation steps:

Step 1. Move towards the goal T.

o If the goal is reached, stop.

e If a local minimum is detected, proceed to Step 2.

Step 2. Navigate around obstacles. Choose the direction to follow along the boundary
of the obstacle. Insert an intermediate waypoint to divert the path around the obstacle.
Move towards the intermediate waypoint while maintaining dp,(7"):

e [f the goal is reached, stop.

e If an intermediate point outside the obstacle is found and d(w,T") < dpwin(T), proceed
to Step 3.

e If the robot completes its detour around the obstacle and determines the goal is
unreachable, stop.

Step 3. Transition phase. Move directly towards w until the point Z: d(Z,T) < duyin(T)
is reached. Then proceed to Step 1.
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Fig. 1. Flowchart of the InsertBug algorithm

3. System Setup

The algorithm was implemented in ROS Noetic Ninjemys using C++ [21]. Interaction with
the robot occurred via the ROS topics. The algorithm’s implementation was tested in the
Gazebo simulation environment, with 30 different maps generated to simulate conditions and
scenarios that the robot might encounter. Gazebo made it possible to detect and correct
errors that appeared while implementing the algorithm, as well as evaluate its accuracy
under conditions that mimic real-world scenarios. This approach aligns with other ROS-based
simulations in complex environments, which provide accurate modeling and visualization of a
robot’s behavior before deployment in real-world settings [22,23]. The tests were conducted
using the LRF-equipped Turtlebot 3 Burger robot (Fig. 2) that detects obstacles and plans its
path in accordance with the InsertBug algorithm.
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Fig. 2. TurtleBot 3 Burger robot in the Gazebo environment

4. Validation

The proposed algorithm was tested and validated experimentally using the Gazebo
simulator. The tests were performed with three types of maps:

e Concave and convex obstacles (C&CO): environments with basic geometric
obstacles (Fig. 3).

e Mazes: complex configurations designed to challenge the robot’s path-finding capabilities
(Fig. 4).

e Office spaces: simulated indoor settings resembling real-world environments (Fig. 5).

Fig. 3. Traversed path in a C&CO environment with different obstacle density levels: (a) close (CCO1),
(b) medium (CCO2), and (c) distant (CCO3). The green dot shows the starting position of the robot
on the map, while the blue dot is the target position

The maps (20 x 20 m) were generated using the Gazebo Worlds Construction Tool [24].
For each map, 10 pairs of starting and target points were randomly generated, with a minimum
distance of 1 m and not exceeding the diagonal length of the square formed by these points.
The points were placed so that they did not overlap with the obstacles. To ensure the algorithm’s
reliability, each map was tested in two trials.
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Fig. 4. Traversed path in a maze environment with different wall thickness levels: (a) thick (Mazel),
(b) medium (Maze2), and (c) thin (Maze3). The green dot shows the starting position of the robot on
the map, while the blue dot is the target position

Fig. 5. Traversed path in an office space environment (OFFICEL). The green dot shows the starting
position of the robot on the map, while the blue dot is the target position

4.1. Concave and convex obstacles. The concave and convex settings in the simulation
represent various obstacle shapes. The convex obstacles appeared as bumps, while the concave
obstacles were like dents or hollows. Both obstacle types are shown in black. White areas indicate
spaces without obstacles. These settings were used to test the robot’s ability to navigate around
bumps and hollows in order to reach its target points effectively. The density of obstacles on
the map could be adjusted by choosing one of the following three options (Fig. 3):

e Close: high obstacle density.
e Medium: medium obstacle density.

e Distant: low obstacle density.

The obstacles were evenly distributed and adequately spaced across the map. The total
number of obstacles is proportional to the map area. In the figures, the green and blue dots on
the map indicate the initial and target positions of the robot, respectively.
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4.2. Mazes. The maze settings in the simulation represent confined spaces designed to
challenge the algorithm’s navigation capabilities. Obstacles are shown as black regions, while
white areas indicate free spaces. The intricate layouts of the mazes were used to simulate
complex environments where the robot must navigate through narrow passages and around
obstacles to reach its target points. The maze walls had the following thickness (Fig. 4):

e Thick: 300 px.
e Medium: 200 px.
e Thin: 100 px.

These parameters define how wall thickness in the maze influenced the complexity of
navigation. Accessibility between all free space points was ensured using an algorithm similar
to depth-first graph traversal. The figures show a map where the green and blue dots indicate
the initial and target positions of the robot, respectively.

4.3. Office space maps. The office space settings in the simulation represent realistic
indoor environments. Obstacles such as walls, furniture, and other fixtures are shown as black
regions, while white regions are free spaces. The layout mimics typical office designs, providing
a mix of open areas and confined spaces that challenge the robot’s ability to maneuver around
common indoor obstacles to reach its target points. In (Fig. 5), office desks (40 x 80 px) are
evenly distributed, ensuring adequate spacing between obstacles.

4.4. Robot parameters. The following parameters were set for the robot’s optimal
performance across the experiments:

e Maximum translational velocity: the robot’s maximum speed when moving in a
straight line is set to 0.22 m/s, determined empirically to ensure smooth linear motion.

e Maximum rotational velocity: the robot’s maximum speed when rotating is set to
2.75 rad/s, determined empirically to ensure smooth angular motion.

e Goal tolerance parameters:

— Cartesian goal tolerance: the tolerance for the robot’s position in the XY plane
is set to 0.05 m.

— Yaw goal tolerance: the tolerance for the robot’s orientation (yaw) is determined
experimentally and set to 0.17 rad.

Limiting the translational velocity prevents the robot from moving too quickly, reducing
the risk of overshooting the target points or losing control, especially in environments with
tight spaces or numerous obstacles. Controlling the rotational velocity is crucial for maintaining
stability and precision when changing directions. High rotational speeds could cause the robot to
become unstable or make inaccurate turns, negatively affecting its ability to navigate in complex
environments. Goal tolerance parameters define how close the robot needs to get to the target
position and orientation before considering the goal to be reached. Tight tolerance ensures
precise navigation, reducing errors in positioning that could accumulate over long distances.
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4.5. Experimental results. The experiments addressed two main problems. First,
inaccuracies in the robot’s odometry may affect obstacle traversal assessments due to the robot’s
physical dimensions. Second, the robot may get stuck at an obstacle’s boundaries during its
mission, which requires recovery strategies.

Tables 1, 2, and 3 present the test results for various map settings. Each table has eight
columns: (1) test number, (2) map name, (3) total distance traveled by the robot (in meters),
(4) sum of the angles turned by the robot (including the angles turned during the recovery
mode when the robot was stuck), (5) absolute difference in distance traveled between the first
and second trials (in meters), (6) absolute difference in angles turned between the first and
second trials (in radians), (7) normalized difference in distance traveled relative to the first
trial, calculated by dividing the difference by the total distance traveled by the robot in the
first trial, and (8) normalized difference in angles turned, calculated similarly to the normalized
difference in distance traveled.

In some cases, the robot changed the direction multiple times when it detected it was moving
away from an obstacle. A significant deviation from the planned trajectory was observed in test
no. 7 (Maze 4), where the robot got stuck near the obstacle corners due to odometry drift.
The recovery mode was activated, causing the robot to spin in order to escape the obstacle
boundary. As a result, the absolute normalized yaw difference in this case was 18.5 %, compared
to an average of 4.24 % for this map type.

In contrast, the C&CO maps yielded better results. The distances traveled were close to the
shortest possible straight-line paths, as the robot relied less on boundary following and more
on optimized local routing. These results confirm the algorithm’s ability to build shorter paths
on maps with convex and concave obstacles.

The tests in the office environments produced varying results. On maps such as OFFICEL,
OFFICE2, and OFFICES5, the robot followed relatively efficient trajectories. However, on maps
like OFFICE3, OFFICE4, and OFFICE?7, the robot got stuck more frequently and activated
the recovery mode, leading to higher absolute normalized yaw difference values. In particular,
OFFICET showed a significant absolute normalized deviation from the course (45.01 %) due to
the accumulated errors triggering the recovery mode. The absolute normalized difference in the
path length generally remained within acceptable limits, varying with the complexity of the
map layout.

The average travel time in the mazes was twice as long as in other setting types, with
the robot making nearly four times as many turns. Additionally, although the total distances
traveled by the robot in the C&CO and office settings were similar, the average number of turns
in the office spaces was about 1.5 times higher.

Conclusions

The InsertBug algorithm implemented in the ROS framework was studied using the
TurtleBot3 Burger platform tested in the Gazebo simulator. It addresses practical challenges,
which are often overlooked in theoretical models. Key issues include: the robot’s odometry
inaccuracies affecting the obstacle traversal assessments due to the robot’s physical dimensions;
recovery strategies used by the robot when it gets stuck at the boundaries of an obstacle.

The algorithm proved to be effective for real-world scenarios. Its performance was evaluated
based on three distinct map types: convex and concave obstacles, mazes, and office spaces.
The results of the tests varied across the environments and demonstrate that the algorithm’s
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capacity to navigate is better in simpler settings than in complex scenarios, such as maze

navigation and maneuvering within office layouts.

Table 1. Comparison of path lengths, yaw, and differences across various mazes

No | Map | Path | Total Abs. Abs. Abs. Abs.
length | yaw length | yaw norm. | norm.
(m) (rad) diff. diff. length | yaw
(m) (rad) diff. diff.
(%) (%)
1 . 44.
Mazel 99.55 344.68 2.1 7.86 2.2 2.28
2 93.45 336.82
s Maze2 17.66 16.71 1.05 2.45 5.95 14.66
4 18.71 19.16
> Maze3 120.77"| 378.41 0.24 1.62 0.2 0.43
6 121.01 | 376.79
7 Maze4 8791 220.09 0.33 0.58 0.36 0.26
8 88.24 219.51
) Mazeb 21.34 36.22 1.07 1.71 5.0 4.72
10 20.27 34.51
1 Maze6 80.12 291.03 0.7 0.53 0.87 0.18
12 79.42 290.50
1 129.32 .
s Maze7 03 500.75 3.51 101.72 2.71 18.5
14 125.81 | 449.03
1 45.51 100.21
o Maze8 05 00 1.39 0.76 3.05 0.76
16 44.12 99.45
1 . .64
7 Maze9 55.67 876 0.0 0.42 0.0 0.48
18 55.67 88.06
19 102.73 | 305.12
Mazel0 0.7 0.45 0.68 0.15
20 102.03 | 304.67
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Table 2. Comparison of path lengths, yaw, and differences across various C&CO environments

No | Map | Path | Total Abs. Abs. Abs. Abs.
length | yaw length | yaw norm. | norm.
(m) (radians|) diff. diff. length | yaw
(m) (radians)) diff. diff.
(%) (%)
1 40.01 .32
CCO1 0.0 593 0.23 0.72 0.57 1.21
2 40.24 60.04
3 25.67 48.05
CCO2 0.78 0.11 3.04 0.23
4 24.89 47.94
> CCO3 3834 43.54 0.44 0.56 1.14 1.29
6 37.90 42.98
7 31.67 55.23
CCO4 0.38 0.47 1.19 0.85
8 32.05 54.76
9 29.98 80.53
CCO5 0.56 27.52 1.86 34.17
10 30.54 53.01
11 23. 48.
CCO6 309 8.07 0.28 0.37 1.22 0.76
12 22.81 49.04
13 34.65 56.08
CCO7 0.76 0.09 2.2 0.16
14 33.89 55.99
15 CCO8 33.29 3949 0 0.53 0 1.34
16 33.29 40.02
17 20.01 32.04
CCO9 1.02 9.99 5.1 32.2
18 18.99 42.03
19 35.67 55.12
CCO10 0.33 0.23 0.92 0.42
20 36 54.89
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Table 3. Comparison of path lengths, yaw, and differences across various offices

No Map Path | Total Abs. Abs. Abs. Abs.
length | yaw length | yaw norm. norm.
(m) (rad) diff. diff. length | yaw
(m) (rad) diff. diff.
(%) (%)
L OFFICE1 29.03 05.88 0.35 1.85 1.21 2.81
2 28.68 64.03
) .32
3 OFFICE2 50-06 89.3 0.98 0.72 1.96 0.81
4 51.04 90.04
> OFFICE3 43.09 83.55 0.53 1.24 1.23 1.48
6 42.56 84.79
21.01 .02
’ OFFICE4 0 390 1.08 2.00 5.14 5.12
8 22.09 41.01
2.04 :
0 OFFICES 32.0 79.03 1.05 4.11 3.28 5.21
10 33.09 83.14
) .32
i OFFICE6 45.68 08.3 1.35 1.76 2.95 1.78
12 47.03 96.56
1 19. 4.4
s OFFICET 0.03 3443 0.53 15.61 2.78 45.01
14 19.56 50.04
15 OFFICES 32.54 09.03 0.51 0.64 1.57 0.92
16 33.05 68.39
1 21 2.34
’ OFFICE9 60 ’ 1.31 1.69 2.17 2.33
18 58.90 74.03
1 47. 98.32
0 OFFICE10 793 1.1 0.75 2.3 0.76
20 49.03 99.07
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